Forest diebacks pose a major threat to global ecosystems. Identifying and mapping both living and dead trees is crucial for understanding the causes and implementing effective management strategies. This study explores the efficacy of Mask R–CNN for automated forest dieback monitoring. The method detects individual trees, delineates their crowns, and classifies them as alive or dead. We evalu…
Depth estimation and 3D model reconstruction from aerial imagery is an important task in photogrammetry, remote sensing, and computer vision. To compare the performance of different image-based approaches, this study presents a benchmark for UAV-based aerial imagery using the UseGeo dataset. The contributions include the release of various evaluation routines on GitHub, as well as a comprehensi…
Several industrial and commercial bulk material management applications rely on accurate, current stockpile volume estimation. Proximal imaging and LiDAR sensing modalities can be used to derive stockpile volume estimates in outdoor and indoor storage facilities. Among available imaging and LiDAR sensing modalities, the latter is more advantageous for indoor storage facilities due to its abilit…
Real-time semantic segmentation of point clouds has increasing importance in applications related to 3D city modelling and mapping, automated inventory of forests, autonomous driving and mobile robotics. Current state-of-the-art point cloud semantic segmentation methods rely heavily on the availability of 3D laser scanning data. This is problematic in regards of low-latency, real-time applicati…
This paper introduces methods for monitoring rock slope movements in Alpine environments based on terrestrial images. The first method is a photogrammtric point cloud-based deformation analysis, relying on M3C2. Although effective in identifying large changes, the method has a tendency to underestimate smaller-scale movements. A feature-based method is presented to address this limitation, usin…
Various methods have been developed to assign pollen to its botanical origin. They range from technically complex approaches to the less precise but sophisticated chromatic assessment, in which the pollen colors are used for identification. However, a common challenge lies in the similarity of colors of pollen from different plant species. The advent of camera-based bee monitoring systems has s…
Scalable and transferable methods for generating reliable reference data for automated remote sensing approaches are crucial, especially for mapping complex Earth surface processes such as gully erosion in low-populated and inaccessible areas. As an alternative for the labour-intense in-situ authoritative mapping, collaborative approaches enable volunteers to generate redundant independent geoi…
Predicting crop yield using deep learning (DL) and remote sensing is a promising technique in agriculture. In smallholder agriculture (
CNES is currently carrying out a Phase A study to assess the feasibility of a future hyperspectral imaging sensor (10 m spatial resolution) combined with a panchromatic camera (2.5 m spatial resolution). This mission focuses on both high spatial and spectral resolution requirements, as inherited from previous French studies such as HYPEX, HYPXIM, and BIODIVERSITY. To meet user requirements, cos…
In recent years, there has been a growing emphasis on assessing and ensuring the quality of horticultural and agricultural produce. Traditional methods involving field measurements, investigations, and statistical analyses are labour-intensive, time-consuming, and costly. As a solution, Hyperspectral Imaging (HSI) has emerged as a non-destructive and environmentally friendly technology. HSI has…