PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
No image available for this title

Text

Semantic interpretation of dense urban areas of Indonesia using various classification methods

Teguh Fayakun Alif - Nama Orang;

Airbone LIDAR data classification using machine learning algorithm has been a hot topic within the geospasial information community. LIDAR data interpretation based on point clouds is a major domain of automatic mapping. With the rapid development of urban areas, updating database of the geospasial information is urgently needed. Usually, updating of the geospatial information use manual interpretation which is timw consuming and costly. In order to find the best method as well as to improve the efficiency, an automatic approach of data interpretation is absolutely needed.
However, each study area has specific feature characteristics and it can influence the accuracy of the classification results of the urban landscape. For this reason , this thesis explores appropriate LIDAR data classification methods that can be used in Indonesia. The rsearch structure consistt of 4 components: types of neighborhood, feature extraction, feature selection assessment, amd classification. To obtain optimal results, we used the comparison of quantitative results with different parameter configurations and evaluation using reference labels with respect to the semantic classes (Natural Ground, Building, Artificial Ground and Vegetation).
Promosing result of accuracy were obtained, 95.72% for combination of Support Vector Machine (SVM) algorith, K-nearest neighborhood with radius 20 neighbors (K20) and 3D-Eig + H group features, then 95,28% for combination of Suport Vector MAchine (SVM) algorith, spherical neoghborhood with radius 2m (S2) and all features, and 95,04% for combination of random forest (RF), cylindrical neighborhood with radius 3m(3m) and all features. Moreover the quantitative comparison result confirms the effectivenes of the combination method of selection of types of environment, multi-source features, and classification algorithm.


Ketersediaan
B20190725314621.3678 TEG sPerpustakaan BIG (600)Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
621.3678 TEG s
Penerbit
Berlin : Technische Universit Berlin., 2018
Deskripsi Fisik
48 hlm. : illus. ; 30 cm.
Bahasa
Inggris
ISBN/ISSN
-
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
other
Tipe Pembawa
unspecified
Edisi
-
Subjek
Penginderaan Jauh
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Tidak Ada Data
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik