PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
No image available for this title

Text

Generalised fuzzy cognitive maps for modelling complex qualitative systems: the case of flood risk reduction planning in Kampala, Uganda

Abhishek Nair - Nama Orang;

The Aim of this study was to design a flexible fuzzy cognitifive mapping approach that is capable of modelling and analysisng the behavior of complex qualitative systems. The motivation for designing such a method is to help analyse the behaviour of cmplex social-environmental-technological systems, speciffically, to understand the manifestation of climate risk and analyse possible policy options and development pathways. To Achieve the objective an in-depth analysis of the capabilities of traditional FCMs and its advances in modelling complex qualitative systems were analysed. A flexible approach was desingned based on cogitating complex system dynamics properties and exploring issues that need to be addressed in FCMs to be able to model complex qualitative SD. The efficacy of this approach, was tested in the light of a real world case of the socio-environmental-technological consequences of heavy rainfall in Kampala, Uganda.
Generalised Fuzzy Cognitive Maps (GFCMs) are expert driven that can capture and model complex causal reasoning. GFCMs use fuzzy rules to re[present dynamics of concepts and relations (perceived), including the time dynamics of relations. GFCNs introduces several, single-layer perceptrons to simulate dynamics, i.e. temporally explicit development of concepts and relations. The results explains, the relative, and absolute change the system undergoes overtime ang can also model time decayed and lagged dynamics influences. The results of the simulations using GFCMs explains the evolution of a system to a greater detail while overcoming most drawback. It is concluded that GFCMs are posible improvement over most methods trying to model complex qualitative SD.
Finally, the outcome of this study is to help robust decision making, in the light of uncertainty and complexity. The Study can be useful two groups of stakeholder.i) researchers that try model the behaviour of complex systems in data scare environments/regions and ii) decision makers that wish to try, test and eavluate several development strategies and policy options of pathways for a given system.


Ketersediaan
B20210419015D 363.34936 ABH gPerpustakaan BIG (300)Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
D 363.34936 ABH g
Penerbit
Netherland : University of Twente., 2020
Deskripsi Fisik
xv, 259 hlm. : illus. ; 24 cm.
Bahasa
Inggris
ISBN/ISSN
978-90-365-4964-6
Klasifikasi
363.34936
Tipe Isi
text
Tipe Media
other
Tipe Pembawa
unspecified
Edisi
-
Subjek
Bencana Banjir
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Tidak Ada Data
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik