PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Automated pipeline reconstruction using deep learning & instance segmentation

Text

Automated pipeline reconstruction using deep learning & instance segmentation

Lukas Hart - Nama Orang; Stefan Knoblach - Nama Orang; Michael Moser - Nama Orang;

BIM is a powerful tool for the construction industry as well as for various other industries, so that its use has increased massively in recent years. Laser scanners are usually used for the measurement, which, in addition to the high acquisition costs, also cause problems on reflective surfaces. The use of photogrammetric techniques for BIM in industrial plants, on the other hand, is less widespread and less automated. CAD software (for point cloud evaluation) contains at best automated reconstruction algorithms for pipes. Fittings, flanges or elbows require a manual reconstruction. We present a method for automated processing of photogrammetric images for modeling pipelines in industrial plants. For this purpose we use instance segmentation and reconstruct the components of the pipeline directly based on the edges of the segmented objects in the images. Hardware costs can be kept low by using photogrammetry instead of laser scanning. Besides the autmatic extraction and reconstruction of pipes, we have also implemented this for elbows and flanges. For object recognition, we fine-tuned different instance segmentation models using our own training data, while also testing various data augmentation techniques. The average precision varies depending on the object type. The best results were achieved with Mask R–CNN. Here, the average precision was about 40%. The results of the automated reconstruction were examined with regard to the accuracy on a test object in the laboratory. The deviations from the reference geometry were in the range of a few millimeters and were comparable to manual reconstruction. In addition, further tests were carried out with images from a plant. Provided that the objects were correctly and completely recognized, a satisfactory reconstruction is possible with the help of our method.


Ketersediaan
37621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2023
Deskripsi Fisik
19 hlm PDF, 9.867 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.9, August 2023
Subjek
Deep learning
Instance segmentation
Industrial plant
Pipeline
Photogrammetry
Object detection
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Automated pipeline reconstruction using deep learning & instance segmentation
    BIM is a powerful tool for the construction industry as well as for various other industries, so that its use has increased massively in recent years. Laser scanners are usually used for the measurement, which, in addition to the high acquisition costs, also cause problems on reflective surfaces. The use of photogrammetric techniques for BIM in industrial plants, on the other hand, is less widespread and less automated. CAD software (for point cloud evaluation) contains at best automated reconstruction algorithms for pipes. Fittings, flanges or elbows require a manual reconstruction. We present a method for automated processing of photogrammetric images for modeling pipelines in industrial plants. For this purpose we use instance segmentation and reconstruct the components of the pipeline directly based on the edges of the segmented objects in the images. Hardware costs can be kept low by using photogrammetry instead of laser scanning. Besides the autmatic extraction and reconstruction of pipes, we have also implemented this for elbows and flanges. For object recognition, we fine-tuned different instance segmentation models using our own training data, while also testing various data augmentation techniques. The average precision varies depending on the object type. The best results were achieved with Mask R–CNN. Here, the average precision was about 40%. The results of the automated reconstruction were examined with regard to the accuracy on a test object in the laboratory. The deviations from the reference geometry were in the range of a few millimeters and were comparable to manual reconstruction. In addition, further tests were carried out with images from a plant. Provided that the objects were correctly and completely recognized, a satisfactory reconstruction is possible with the help of our method.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik