PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of ICESat-2 noise filtering using a point cloud neural network

Text

ICESat-2 noise filtering using a point cloud neural network

Mariya Velikova - Nama Orang; Juan Fernandez-Diaz - Nama Orang; Craig Glennie - Nama Orang;

The ATLAS sensor onboard the ICESat-2 satellite is a photon-counting lidar (PCL) with a primary mission to map Earth's ice sheets. A secondary goal of the mission is to provide vegetation and terrain elevations, which are essential for calculating the planet's biomass carbon reserves. A drawback of ATLAS is that the sensor does not provide reliable terrain height estimates in dense, high-closure forests because only a few photons reach the ground through the canopy and return to the detector. This low penetration translates into lower accuracy for the resultant terrain model. Tropical forest measurements with ATLAS have an additional problem estimating top of canopy because of frequent atmospheric phenomena such as fog and low clouds that can be misinterpreted as top of the canopy. To alleviate these issues, we propose using a ConvPoint neural network for 3D point clouds and high-density airborne lidar as training data to classify vegetation and terrain returns from ATLAS. The semantic segmentation network provides excellent results and could be used in parallel with the current ATL08 noise filtering algorithms, especially in areas with dense vegetation. We use high-density airborne lidar data acquired along ICESat-2 transects in Central American forests as a ground reference for training the neural network to distinguish between noise photons and photons lying between the terrain and the top of the canopy. Each photon event receives a label (noise or signal) in the test phase, providing automated noise-filtering of the ATL03 data. The terrain and top of canopy elevations are subsequently aggregated in 100 m segments using a series of iterative smoothing filters. We demonstrate improved estimates for both terrain and top of canopy elevations compared to the ATL08 100 m segment estimates. The neural network (NN) noise filtering reliably eliminated outlier top of canopy estimates caused by low clouds, and aggregated root mean square error (RMSE) decreased from 7.7 m for ATL08 to 3.7 m for NN prediction (18 test profiles aggregated). For terrain elevations, RMSE decreased from 5.2 m for ATL08 to 3.3 m for the NN prediction, compared to airborne lidar reference profiles.


Ketersediaan
48621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
13 hlm PDF, 10.771 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.11, January 2024
Subjek
Point Cloud
LIDAR
ICESat-2
Noise filtering
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • ICESat-2 noise filtering using a point cloud neural network
    The ATLAS sensor onboard the ICESat-2 satellite is a photon-counting lidar (PCL) with a primary mission to map Earth's ice sheets. A secondary goal of the mission is to provide vegetation and terrain elevations, which are essential for calculating the planet's biomass carbon reserves. A drawback of ATLAS is that the sensor does not provide reliable terrain height estimates in dense, high-closure forests because only a few photons reach the ground through the canopy and return to the detector. This low penetration translates into lower accuracy for the resultant terrain model. Tropical forest measurements with ATLAS have an additional problem estimating top of canopy because of frequent atmospheric phenomena such as fog and low clouds that can be misinterpreted as top of the canopy. To alleviate these issues, we propose using a ConvPoint neural network for 3D point clouds and high-density airborne lidar as training data to classify vegetation and terrain returns from ATLAS. The semantic segmentation network provides excellent results and could be used in parallel with the current ATL08 noise filtering algorithms, especially in areas with dense vegetation. We use high-density airborne lidar data acquired along ICESat-2 transects in Central American forests as a ground reference for training the neural network to distinguish between noise photons and photons lying between the terrain and the top of the canopy. Each photon event receives a label (noise or signal) in the test phase, providing automated noise-filtering of the ATL03 data. The terrain and top of canopy elevations are subsequently aggregated in 100 m segments using a series of iterative smoothing filters. We demonstrate improved estimates for both terrain and top of canopy elevations compared to the ATL08 100 m segment estimates. The neural network (NN) noise filtering reliably eliminated outlier top of canopy estimates caused by low clouds, and aggregated root mean square error (RMSE) decreased from 7.7 m for ATL08 to 3.7 m for NN prediction (18 test profiles aggregated). For terrain elevations, RMSE decreased from 5.2 m for ATL08 to 3.3 m for the NN prediction, compared to airborne lidar reference profiles.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik