PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Deep learning techniques for hyperspectral image analysis in agriculture: A review

Text

Deep learning techniques for hyperspectral image analysis in agriculture: A review

Mohamed Fadhlallah Guerri - Nama Orang; Cosimo Distante - Nama Orang; Paolo Spagnolo - Nama Orang; Fares Bougourzi - Nama Orang; Abdelmalik Taleb-Ahmed - Nama Orang;

In recent years, there has been a growing emphasis on assessing and ensuring the quality of horticultural and agricultural produce. Traditional methods involving field measurements, investigations, and statistical analyses are labour-intensive, time-consuming, and costly. As a solution, Hyperspectral Imaging (HSI) has emerged as a non-destructive and environmentally friendly technology. HSI has gained significant popularity as a new technology, particularly for its promising applications in remote sensing, notably in agriculture. However, classifying HSI data is highly complex because it involves several challenges, such as the excessive redundancy of spectral bands, scarcity of training samples, and the intricate non-linear relationship between spatial positions and spectral bands. Notably, Deep Learning (DL) techniques have demonstrated remarkable efficacy in various HSI analysis tasks, including those within agriculture. As interest continues to surge in leveraging HSI data for agricultural applications through DL approaches, a pressing need exists for a comprehensive survey that can effectively navigate researchers through the significant strides achieved and the future promising research directions in this domain. This literature review diligently compiles, analyzes, and discusses recent endeavours employing DL methodologies. These methodologies encompass a spectrum of approaches, ranging from Autoencoders (AE) to Convolutional Neural Networks (CNN) (in 1D, 2D, and 3D configurations), Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Generative Adversarial Networks (GAN), Transfer Learning (TL), Semi-Supervised Learning (SSL), Few-Shot Learning (FSL) and Active Learning (AL). These approaches are tailored to address the unique challenges posed by agricultural HSI analysis. This review evaluates and discusses the performance exhibited by these diverse approaches. To this end, the efficiency of these approaches has been rigorously analyzed and discussed based on the results of the state-of-the-art papers on widely recognized land cover datasets.


Ketersediaan
53621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
19 hlm PDF, 3.154 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.12, April 2024
Subjek
Deep learning
Hyperspectral imaging
HIS
Agriculture
CNN
RNN
GAN
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Deep learning techniques for hyperspectral image analysis in agriculture: A review
    In recent years, there has been a growing emphasis on assessing and ensuring the quality of horticultural and agricultural produce. Traditional methods involving field measurements, investigations, and statistical analyses are labour-intensive, time-consuming, and costly. As a solution, Hyperspectral Imaging (HSI) has emerged as a non-destructive and environmentally friendly technology. HSI has gained significant popularity as a new technology, particularly for its promising applications in remote sensing, notably in agriculture. However, classifying HSI data is highly complex because it involves several challenges, such as the excessive redundancy of spectral bands, scarcity of training samples, and the intricate non-linear relationship between spatial positions and spectral bands. Notably, Deep Learning (DL) techniques have demonstrated remarkable efficacy in various HSI analysis tasks, including those within agriculture. As interest continues to surge in leveraging HSI data for agricultural applications through DL approaches, a pressing need exists for a comprehensive survey that can effectively navigate researchers through the significant strides achieved and the future promising research directions in this domain. This literature review diligently compiles, analyzes, and discusses recent endeavours employing DL methodologies. These methodologies encompass a spectrum of approaches, ranging from Autoencoders (AE) to Convolutional Neural Networks (CNN) (in 1D, 2D, and 3D configurations), Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Generative Adversarial Networks (GAN), Transfer Learning (TL), Semi-Supervised Learning (SSL), Few-Shot Learning (FSL) and Active Learning (AL). These approaches are tailored to address the unique challenges posed by agricultural HSI analysis. This review evaluates and discusses the performance exhibited by these diverse approaches. To this end, the efficiency of these approaches has been rigorously analyzed and discussed based on the results of the state-of-the-art papers on widely recognized land cover datasets.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik