PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Evaluating deep-learning models for debris-covered glacier mapping

Text

Evaluating deep-learning models for debris-covered glacier mapping

Zhiyuan Xie - Nama Orang; Vijayan K. Asari - Nama Orang; Umesh K. Haritashya - Nama Orang;

In recent decades, mountain glaciers have experienced the impact of climate change in the form of accelerated glacier retreat and other glacier-related hazards such as mass wasting and glacier lake outburst floods. Since there are wide-ranging societal consequences of glacier retreat and hazards, monitoring these glaciers as accurately and repeatedly as possible is important. However, the accurate glacier boundary, especially the debris-covered glacier (DCG) boundary, which is one of the primary inputs in many glacier analyses, remains a challenge even after many years of research using conventional remote sensing methods or machine-learning methods. The GlacierNet, a deep-learning-based approach, utilized the convolutional neural network (CNN) segmentation model to delineate DCG at a high level of accuracy. In this study, the performance of GlacierNet's CNN is compared with several advanced CNN segmentation models, including Mobile-UNet, Res-UNet, FCDenseNet, R2UNet, and DeepLabV3+, to identify the most salient features that could improve the DCG segmentation accuracy. The experimental evaluation shows the highest intersection over union (IOU) of 0.8623 for the DeepLabV3+ and, therefore, is recommended for the regional and large-scale DCG mapping. Moreover, GlacierNet's CNN with the second-highest IOU of 0.8599 is a suitable and light structure for regional DCG mapping.


Ketersediaan
121551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2021
Deskripsi Fisik
17 hlm PDF, 31.040 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.12, December 2021
Subjek
Deep-learning
Image segmentation
Convolutional neural network
Satellite imagery
Glacier mapping
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Evaluating deep-learning models for debris-covered glacier mapping
    In recent decades, mountain glaciers have experienced the impact of climate change in the form of accelerated glacier retreat and other glacier-related hazards such as mass wasting and glacier lake outburst floods. Since there are wide-ranging societal consequences of glacier retreat and hazards, monitoring these glaciers as accurately and repeatedly as possible is important. However, the accurate glacier boundary, especially the debris-covered glacier (DCG) boundary, which is one of the primary inputs in many glacier analyses, remains a challenge even after many years of research using conventional remote sensing methods or machine-learning methods. The GlacierNet, a deep-learning-based approach, utilized the convolutional neural network (CNN) segmentation model to delineate DCG at a high level of accuracy. In this study, the performance of GlacierNet's CNN is compared with several advanced CNN segmentation models, including Mobile-UNet, Res-UNet, FCDenseNet, R2UNet, and DeepLabV3+, to identify the most salient features that could improve the DCG segmentation accuracy. The experimental evaluation shows the highest intersection over union (IOU) of 0.8623 for the DeepLabV3+ and, therefore, is recommended for the regional and large-scale DCG mapping. Moreover, GlacierNet's CNN with the second-highest IOU of 0.8599 is a suitable and light structure for regional DCG mapping.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik