PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Adaptive Proxy-based Robust Production Optimization with Multilayer Perceptron

Text

Adaptive Proxy-based Robust Production Optimization with Multilayer Perceptron

Cuthbert Shang Wui Ng - Nama Orang; Ashkan Jahanbani Ghahfarokhi - Nama Orang;

Machine learning (ML) has been a technique employed to build data-driven models that can map the relationship between the input and output data provided. ML-based data-driven models offer an alternative path to solving optimization problems, which are conventionally resolved by applying simulation models. Higher computational cost is induced if the simulation model is computationally intensive. Such a situation aptly applies to petroleum engineering, especially when different geological realizations of numerical reservoir simulation (NRS) models are considered for production optimization. Therefore, data-driven models are suggested as a substitute for NRS. In this work, we demonstrated how multilayer perceptron could be implemented to build data-driven models based on 10 realizations of the Egg Model. These models were then coupled with two nature-inspired algorithms, viz. particle swarm optimization and grey wolf optimizer to solve waterflooding optimization. These data-driven models were adaptively re-trained by applying a training database that was updated via the addition of extra samples retrieved from optimization with the proxy models. The details of the methodology will be divulged in the paper. According to the results obtained, we could deduce that the methodology generated reliable data-driven models to solve the optimization problem, as justified by the excellent performance of the ML-based proxy model (with a coefficient of determination, R2 exceeding 0.98 in training, testing, and blind validation) and accurate optimization result (less than 1% error between the Expected Net Present Values optimized using NRS and proxy models). This study aids in an enhanced understanding of implementing adaptive training in tandem with optimization in ML-based proxy modeling.


Ketersediaan
136551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2022
Deskripsi Fisik
15 hlm PDF, 8.103 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.16, December 2022
Subjek
Machine Learning
Data-driven modeling
Multilayer perceptron
Nature-inspired algorithms
Adaptive training
Robust production optimization
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Adaptive Proxy-based Robust Production Optimization with Multilayer Perceptron
    Machine learning (ML) has been a technique employed to build data-driven models that can map the relationship between the input and output data provided. ML-based data-driven models offer an alternative path to solving optimization problems, which are conventionally resolved by applying simulation models. Higher computational cost is induced if the simulation model is computationally intensive. Such a situation aptly applies to petroleum engineering, especially when different geological realizations of numerical reservoir simulation (NRS) models are considered for production optimization. Therefore, data-driven models are suggested as a substitute for NRS. In this work, we demonstrated how multilayer perceptron could be implemented to build data-driven models based on 10 realizations of the Egg Model. These models were then coupled with two nature-inspired algorithms, viz. particle swarm optimization and grey wolf optimizer to solve waterflooding optimization. These data-driven models were adaptively re-trained by applying a training database that was updated via the addition of extra samples retrieved from optimization with the proxy models. The details of the methodology will be divulged in the paper. According to the results obtained, we could deduce that the methodology generated reliable data-driven models to solve the optimization problem, as justified by the excellent performance of the ML-based proxy model (with a coefficient of determination, R2 exceeding 0.98 in training, testing, and blind validation) and accurate optimization result (less than 1% error between the Expected Net Present Values optimized using NRS and proxy models). This study aids in an enhanced understanding of implementing adaptive training in tandem with optimization in ML-based proxy modeling.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik