PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Rapid estimation of minimum depth-to-bedrock from lidar leveraging deep-learning-derived surficial material maps

Text

Rapid estimation of minimum depth-to-bedrock from lidar leveraging deep-learning-derived surficial material maps

William Odom - Nama Orang; Daniel Doctor - Nama Orang;

Previously glaciated landscapes often share similar surficial characteristics, including large areas of exposed bedrock, blankets of till deposits, and alluvium-floored valleys. These materials play significant roles in geologic and hydrologic resources, geohazards, and landscape evolution; however, the vast extents of many previously glaciated landscapes have rendered comprehensive, detailed field mapping difficult. While recent advances in remote sensing have facilitated mapping of surficial materials and landforms, manual map creation has remained a time-intensive task.
The development of convolutional neural networks (CNNs) for image classification has provided a new opportunity for rapid characterization of digital elevation models, thus enabling efficient mapping of surficial materials and landforms. We have developed a methodology that leverages existing geologic maps and high-resolution (1–3 m) lidar data to train a U-Net CNN to classify alluvium and exposed bedrock in previously glaciated regions. Coupled with U.S. Geological Survey-developed geomorphometry tools capable of approximating stream incision depths, these classifications can be used to estimate the minimum thicknesses of stream-proximal hillslope sediments in areas where streams have undergone minimal incision into bedrock.
We validate this approach in the context of the Neversink River watershed, a subbasin of the Delaware River Basin and significant water source for New York City. Evaluation of deep learning model performance demonstrates substantial agreement with manually drawn maps of alluvium and exposed bedrock. Validation of the minimum sediment thickness map using borehole data and passive seismic measurements shows the greatest performance for shallow materials and decreased performance in deep sediments, as well as in areas where bedrock exposures were too small to be resolved by lidar. To resolve these issues and create more accurate surficial maps, we are training new CNNs with additional geologic data and exploring advanced approaches for estimating depths of stream incision.


Ketersediaan
149551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2023
Deskripsi Fisik
11 hlm PDF, 9.277 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.18 June 2023
Subjek
Deep learning
LIDAR
Depth-to-bedrock
Geologic mapping
Sediment thickness
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Rapid estimation of minimum depth-to-bedrock from lidar leveraging deep-learning-derived surficial material maps
    Previously glaciated landscapes often share similar surficial characteristics, including large areas of exposed bedrock, blankets of till deposits, and alluvium-floored valleys. These materials play significant roles in geologic and hydrologic resources, geohazards, and landscape evolution; however, the vast extents of many previously glaciated landscapes have rendered comprehensive, detailed field mapping difficult. While recent advances in remote sensing have facilitated mapping of surficial materials and landforms, manual map creation has remained a time-intensive task. The development of convolutional neural networks (CNNs) for image classification has provided a new opportunity for rapid characterization of digital elevation models, thus enabling efficient mapping of surficial materials and landforms. We have developed a methodology that leverages existing geologic maps and high-resolution (1–3 m) lidar data to train a U-Net CNN to classify alluvium and exposed bedrock in previously glaciated regions. Coupled with U.S. Geological Survey-developed geomorphometry tools capable of approximating stream incision depths, these classifications can be used to estimate the minimum thicknesses of stream-proximal hillslope sediments in areas where streams have undergone minimal incision into bedrock. We validate this approach in the context of the Neversink River watershed, a subbasin of the Delaware River Basin and significant water source for New York City. Evaluation of deep learning model performance demonstrates substantial agreement with manually drawn maps of alluvium and exposed bedrock. Validation of the minimum sediment thickness map using borehole data and passive seismic measurements shows the greatest performance for shallow materials and decreased performance in deep sediments, as well as in areas where bedrock exposures were too small to be resolved by lidar. To resolve these issues and create more accurate surficial maps, we are training new CNNs with additional geologic data and exploring advanced approaches for estimating depths of stream incision.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik