PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of A hybrid knowledge graph for efficient exploration of lithostratigraphic information in open text data

Text

A hybrid knowledge graph for efficient exploration of lithostratigraphic information in open text data

Wenjia Li - Nama Orang; Xiaogang Ma - Nama Orang; Sanaz Salati - Nama Orang; Zhong Xie - Nama Orang; Xinqing Wang - Nama Orang; Liang Wu - Nama Orang;

Rocks formed during different geologic time record the diverse evolution of the geosphere and biosphere. In the past decades, substantial geoscience data have been made open access, providing invaluable resources for studying the stratigraphy in different regions and at different scales. However, many open datasets have information recorded in natural language with heterogeneous terminologies, short of efficient approaches to analyze them. In this research, we constructed a hybrid Stratigraphic Knowledge Graph (StraKG) to help address this challenge. StraKG has two layers, a simple schema layer and a rich instance layer. For the schemas, we used a short but functional list of classes and relationships, and then incorporated community-recognized terminologies from geological dictionaries. For the instances, we used natural language processing techniques to analyze open text data and obtained massive records, such as rocks and spatial locations. The nodes in the two layers were associated to establish a consistent structure of stratigraphic knowledge. To verify the functionality of StraKG, we applied it to the Baidu encyclopedia, the largest online Chinese encyclopedia. Three experiments were implemented on the topics of stratigraphic correlation, spatial distribution of ophiolite in China, and spatio-temporal distribution of open lithostratigraphic data. The results show that StraKG can provide strong knowledge reference for stratigraphic studies. Used together with data exploration and data mining methods, StraKG illustrates a new approach to analyze the open and big text data in geoscience.


Ketersediaan
178551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
10 hlm PDF, 6.209 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.22, June 2024
Subjek
Data Mining
Knowledge graph
Stratigraphy
Natural language processing
Relationship extraction
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • A hybrid knowledge graph for efficient exploration of lithostratigraphic information in open text data
    Rocks formed during different geologic time record the diverse evolution of the geosphere and biosphere. In the past decades, substantial geoscience data have been made open access, providing invaluable resources for studying the stratigraphy in different regions and at different scales. However, many open datasets have information recorded in natural language with heterogeneous terminologies, short of efficient approaches to analyze them. In this research, we constructed a hybrid Stratigraphic Knowledge Graph (StraKG) to help address this challenge. StraKG has two layers, a simple schema layer and a rich instance layer. For the schemas, we used a short but functional list of classes and relationships, and then incorporated community-recognized terminologies from geological dictionaries. For the instances, we used natural language processing techniques to analyze open text data and obtained massive records, such as rocks and spatial locations. The nodes in the two layers were associated to establish a consistent structure of stratigraphic knowledge. To verify the functionality of StraKG, we applied it to the Baidu encyclopedia, the largest online Chinese encyclopedia. Three experiments were implemented on the topics of stratigraphic correlation, spatial distribution of ophiolite in China, and spatio-temporal distribution of open lithostratigraphic data. The results show that StraKG can provide strong knowledge reference for stratigraphic studies. Used together with data exploration and data mining methods, StraKG illustrates a new approach to analyze the open and big text data in geoscience.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik