PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of A generative deep neural network as an alternative to co-kriging

Text

A generative deep neural network as an alternative to co-kriging

Herbert Rakotonirina - Nama Orang; Paul Honeine - Nama Orang; Olivier Atteia - Nama Orang; Antonin Van Exem - Nama Orang;

In geosciences, kriging is leading spatial interpolation, and co-kriging is the most commonly used method for accomplishing spatial interpolation of a target variable by incorporating information from a secondary variable. Co-kriging relies on the assumption of spatial stationarity, which may not hold true in all geospatial contexts, leading to potential inaccuracies in interpolation. The effectiveness of co-kriging can be compromised in areas with sparse data, impacting the reliability of interpolated results. Moreover, it can be resource-intensive when used for interpolation with a substantial volume of data, especially in the case of 3D interpolation. In this paper, we introduce a new method for spatial interpolation that considers two variables using a generative deep neural network. This approach utilizes a convolutional neural network with an encoder–decoder architecture, featuring a single encoder and two decoders to handle the two variables. Additionally, we introduce a loss function that facilitates the control over the relationships between the two variables. Traditional Deep Learning methods require prior training and labeled data, whereas the proposed approach eliminates this requirement and simplifies the interpolation process. In order to assess the performance of our method, we use two real-world datasets. The first one is a 2D dataset of total soil organic carbon combined with the Normalized Difference Vegetation Index. The second one is a 3D dataset that combines concentrations of Hydrocarbon and Fluoride obtained from hyperspectral analysis of soil cores with very limited number of boreholes. The experimental results demonstrate that the proposed method outperforms ordinary kriging and co-kriging, showing a significant improvement when both variables are used. We also demonstrate how the inclusion of the auxiliary variable serves as a means to mitigate the overfitting of the model.


Ketersediaan
209551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
9 hlm PDF, 2.533 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.24, December 2024
Subjek
Deep learning
Kriging
Co-kriging
Environmental data
Soil pollution
Soil organic carbon
Hydrocarbon
Fluoride
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • A generative deep neural network as an alternative to co-kriging
    In geosciences, kriging is leading spatial interpolation, and co-kriging is the most commonly used method for accomplishing spatial interpolation of a target variable by incorporating information from a secondary variable. Co-kriging relies on the assumption of spatial stationarity, which may not hold true in all geospatial contexts, leading to potential inaccuracies in interpolation. The effectiveness of co-kriging can be compromised in areas with sparse data, impacting the reliability of interpolated results. Moreover, it can be resource-intensive when used for interpolation with a substantial volume of data, especially in the case of 3D interpolation. In this paper, we introduce a new method for spatial interpolation that considers two variables using a generative deep neural network. This approach utilizes a convolutional neural network with an encoder–decoder architecture, featuring a single encoder and two decoders to handle the two variables. Additionally, we introduce a loss function that facilitates the control over the relationships between the two variables. Traditional Deep Learning methods require prior training and labeled data, whereas the proposed approach eliminates this requirement and simplifies the interpolation process. In order to assess the performance of our method, we use two real-world datasets. The first one is a 2D dataset of total soil organic carbon combined with the Normalized Difference Vegetation Index. The second one is a 3D dataset that combines concentrations of Hydrocarbon and Fluoride obtained from hyperspectral analysis of soil cores with very limited number of boreholes. The experimental results demonstrate that the proposed method outperforms ordinary kriging and co-kriging, showing a significant improvement when both variables are used. We also demonstrate how the inclusion of the auxiliary variable serves as a means to mitigate the overfitting of the model.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik