PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Integrating empirical analysis and deep learning for accurate monsoon prediction in Kerala, India

Text

Integrating empirical analysis and deep learning for accurate monsoon prediction in Kerala, India

Yajnaseni Dash - Nama Orang; Ajith Abraham - Nama Orang;

Kerala, a coastal state in India characterized by its humid tropical monsoon climate, is profoundly influenced by the Western Ghats and the Arabian Sea. Kerala receives significant rainfall during both the southwest monsoon (June to September, JJAS) and the northeast monsoon (October to December, OND) seasons. Given the substantial impact of rainfall on the state's economy and livelihoods, accurate precipitation forecasting is of critical importance. Although Kerala's annual rainfall is approximately 2.5 times higher than the national average, the state frequently experiences water scarcity due to rapid runoff into the Arabian Sea. This study builds upon previous research concerning Kerala's rainfall patterns and introduces a novel approach to improving rainfall predictions. Usage of a hybrid model that integrates Empirical Mode Decomposition (EMD) with Detrended Fluctuation Analysis (DFA) and deep Long Short-Term Memory (LSTM) neural networks, demonstrates enhanced precision in forecasting. Thus, by integrating empirical data analysis with advanced deep learning techniques, this research offers a robust framework for predicting rainfall in Kerala, making a significant contribution to the field of climate informatics and providing practical benefits for the region's economy and environmental management.


Ketersediaan
219551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
11 hlm PDF, 5.149 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.24, December 2024
Subjek
Deep learning
Kerala monsoon
Southwest
Northeast
LSTM
EMD
DFA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Integrating empirical analysis and deep learning for accurate monsoon prediction in Kerala, India
    Kerala, a coastal state in India characterized by its humid tropical monsoon climate, is profoundly influenced by the Western Ghats and the Arabian Sea. Kerala receives significant rainfall during both the southwest monsoon (June to September, JJAS) and the northeast monsoon (October to December, OND) seasons. Given the substantial impact of rainfall on the state's economy and livelihoods, accurate precipitation forecasting is of critical importance. Although Kerala's annual rainfall is approximately 2.5 times higher than the national average, the state frequently experiences water scarcity due to rapid runoff into the Arabian Sea. This study builds upon previous research concerning Kerala's rainfall patterns and introduces a novel approach to improving rainfall predictions. Usage of a hybrid model that integrates Empirical Mode Decomposition (EMD) with Detrended Fluctuation Analysis (DFA) and deep Long Short-Term Memory (LSTM) neural networks, demonstrates enhanced precision in forecasting. Thus, by integrating empirical data analysis with advanced deep learning techniques, this research offers a robust framework for predicting rainfall in Kerala, making a significant contribution to the field of climate informatics and providing practical benefits for the region's economy and environmental management.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik