PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Reconstruction of reservoir rock using attention-based convolutional recurrent neural network

Text

Reconstruction of reservoir rock using attention-based convolutional recurrent neural network

Indrajeet Kumar - Nama Orang; Anugrah Singh - Nama Orang;

The digital reconstruction of reservoir rock or porous media is important as it enables us to visualize and explore their real internal structures. The reservoir rocks (such as sandstone and carbonate) contain both spatial and temporal characteristics, which pose a big challenge in their characterization through routine core analysis or x-ray microcomputer tomography. While x-ray micro-computed tomography gives us three-dimensional images of the porous media, it is often impossible to quantify the variability of the pore, grains, structure, and orientation experimentally. Recently, machine learning has successfully demonstrated the reconstruction ability of reservoir rock images or any porous media. These reservoir rock images are crucial for the digital characterization of the reservoir. We propose a novel algorithm consisting of the convolutional neural network, an attention mechanism, and a recurrent neural network for the reconstruction of reservoir rock or porous media images. The attention-based convolutional recurrent neural network (ACRNN) can reconstruct a representative sample of reservoir rocks. The reconstructed image quality was checked by comparing them with the original Parker sandstone, Leopard sandstone, carbonate shale, Berea sandstone, and sandy medium images. We evaluated the reconstruction by measuring pore and throat properties, two-point probability function, and structural similarity index. Results show that ACRNN can reconstruct reservoir rock or porous media of different scales with approximately the same geometrical, statistical, and topological parameters of the reservoir rock images. This deep learning method is computationally efficient, fast, and reliable for synthetic image realizations. The model was trained and validated on real images, and the reconstructed images showed excellent concordance with the real images having almost the same pore and grain structures. The deep learning-based digital rock reconstruction of reservoir rock or porous media images can aid in rapid image generation to better understand reservoir rock or subsurface formation.


Ketersediaan
223551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
18 hlm PDF, 14.609 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.24, December 2024
Subjek
Machine Learning
ACRNN
Digital rock reconstruction
Reservoir rock
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Reconstruction of reservoir rock using attention-based convolutional recurrent neural network
    The digital reconstruction of reservoir rock or porous media is important as it enables us to visualize and explore their real internal structures. The reservoir rocks (such as sandstone and carbonate) contain both spatial and temporal characteristics, which pose a big challenge in their characterization through routine core analysis or x-ray microcomputer tomography. While x-ray micro-computed tomography gives us three-dimensional images of the porous media, it is often impossible to quantify the variability of the pore, grains, structure, and orientation experimentally. Recently, machine learning has successfully demonstrated the reconstruction ability of reservoir rock images or any porous media. These reservoir rock images are crucial for the digital characterization of the reservoir. We propose a novel algorithm consisting of the convolutional neural network, an attention mechanism, and a recurrent neural network for the reconstruction of reservoir rock or porous media images. The attention-based convolutional recurrent neural network (ACRNN) can reconstruct a representative sample of reservoir rocks. The reconstructed image quality was checked by comparing them with the original Parker sandstone, Leopard sandstone, carbonate shale, Berea sandstone, and sandy medium images. We evaluated the reconstruction by measuring pore and throat properties, two-point probability function, and structural similarity index. Results show that ACRNN can reconstruct reservoir rock or porous media of different scales with approximately the same geometrical, statistical, and topological parameters of the reservoir rock images. This deep learning method is computationally efficient, fast, and reliable for synthetic image realizations. The model was trained and validated on real images, and the reconstructed images showed excellent concordance with the real images having almost the same pore and grain structures. The deep learning-based digital rock reconstruction of reservoir rock or porous media images can aid in rapid image generation to better understand reservoir rock or subsurface formation.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik