PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Chemical map classification in XMapTools

Text

Chemical map classification in XMapTools

Pierre Lanari - Nama Orang; Mahyra Tedeschi - Nama Orang;

Chemical mapping using electron beam or laser instruments is an important analytical technique that allows the study of the compositional variability of materials in two dimensions. While quantitative compositional mapping of minerals has received considerable attention over the last two decades, pixel misclassification in commonly used software solutions remains a fundamental limitation affecting several applications. Calibration of intensity maps to fully quantitative compositional maps requires accurate classification, for example when a calibration curve is applied to a group of pixels that are assumed to have the same matrix behavior under the electron beam or the laser. This paper compares seven automated supervised machine learning classification algorithms implemented in the open source XMapTools software along with various tools for manual classification, for selecting training data and assessing the quality of a classification result. This new implementation aims to provide the research and industry communities with a free software tool for fast and robust classification of chemical maps. A standardized color scheme with reference colors for minerals and mineral groups is proposed to improve the readability of the classified maps in petrological studies. The performance of each algorithm varies depending on the data set, especially when minerals exhibit strong compositional zoning or when different minerals have similar compositions for a given element. The random forest algorithm based on bootstrap aggregation provides satisfactory results in most situations and is recommended for general use in XMapTools.


Ketersediaan
228551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2025
Deskripsi Fisik
17 hlm PDF, 30.775 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.25, February 2025
Subjek
Random forest
Classification
Petrology
XMapTools
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Chemical map classification in XMapTools
    Chemical mapping using electron beam or laser instruments is an important analytical technique that allows the study of the compositional variability of materials in two dimensions. While quantitative compositional mapping of minerals has received considerable attention over the last two decades, pixel misclassification in commonly used software solutions remains a fundamental limitation affecting several applications. Calibration of intensity maps to fully quantitative compositional maps requires accurate classification, for example when a calibration curve is applied to a group of pixels that are assumed to have the same matrix behavior under the electron beam or the laser. This paper compares seven automated supervised machine learning classification algorithms implemented in the open source XMapTools software along with various tools for manual classification, for selecting training data and assessing the quality of a classification result. This new implementation aims to provide the research and industry communities with a free software tool for fast and robust classification of chemical maps. A standardized color scheme with reference colors for minerals and mineral groups is proposed to improve the readability of the classified maps in petrological studies. The performance of each algorithm varies depending on the data set, especially when minerals exhibit strong compositional zoning or when different minerals have similar compositions for a given element. The random forest algorithm based on bootstrap aggregation provides satisfactory results in most situations and is recommended for general use in XMapTools.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Statistik Pengunjung Web

Hari Ini : 1 Pekan Terakhir : 1 Bulan Terakhir : Total Kunjungan :

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik