PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Predictive regressive models of recent marsh sediment thickness improve the quantification of coastal marsh sediment budgets

Text

Predictive regressive models of recent marsh sediment thickness improve the quantification of coastal marsh sediment budgets

Christopher G. Smith - Nama Orang; Julie Bernier - Nama Orang; Alisha M. Ellis - Nama Orang; Kathryn E.L. Smith - Nama Orang;

Coastal marsh wetlands experience variations in vertical gains and losses through time, which have allowed them to infill relict topography and record variations in drivers. The stratigraphic unit associated with the development of the marsh also reflects the long-term importance of key ecosystem services supplied by the marsh environment, including carbon storage and storm mitigation. Mapping these coastal wetland sediments and the marsh unit thickness is challenging as traditional coastal geophysical tools are not easily deployable (acoustic methods) or are unreliable in saline-soil environments (e.g., ground-penetrating radar), leaving core-based methods the most viable mapping method. In the present study, we utilized prior information on the geologic architecture of the region to select spatial and physical metrics that likely persisted throughout evolution of the marsh during the late Holocene. We then assessed the individual and collective power of these metrics to predict marsh thickness observed from cores. Employing regressive predictive models powered by these data, we improve the quantification of marsh thickness for a coastal fringing marsh within the Grand Bay estuary in Mississippi and Alabama (USA). The information gained from this approach yields improved estimates of the carbon stocks in this environment. Additionally, the stored sediment masses reflect the past, and potential future, persistence of the Grand Bay marsh under historical and present marsh-estuarine sediment exchange fluxes. Such improvements to both the sediment budget of recent marsh stratigraphic units and the spatial extent provide new resources for comparison with large-scale landscape models, the latter of which may be used, when validated, to predict future change and ecosystem transformations.


Ketersediaan
237551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2025
Deskripsi Fisik
12 hlm PDF, 5.867 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.25, February 2025
Subjek
Coastal marsh stratigraphy
Predictive regressive models
Marsh unit thickness
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Predictive regressive models of recent marsh sediment thickness improve the quantification of coastal marsh sediment budgets
    Coastal marsh wetlands experience variations in vertical gains and losses through time, which have allowed them to infill relict topography and record variations in drivers. The stratigraphic unit associated with the development of the marsh also reflects the long-term importance of key ecosystem services supplied by the marsh environment, including carbon storage and storm mitigation. Mapping these coastal wetland sediments and the marsh unit thickness is challenging as traditional coastal geophysical tools are not easily deployable (acoustic methods) or are unreliable in saline-soil environments (e.g., ground-penetrating radar), leaving core-based methods the most viable mapping method. In the present study, we utilized prior information on the geologic architecture of the region to select spatial and physical metrics that likely persisted throughout evolution of the marsh during the late Holocene. We then assessed the individual and collective power of these metrics to predict marsh thickness observed from cores. Employing regressive predictive models powered by these data, we improve the quantification of marsh thickness for a coastal fringing marsh within the Grand Bay estuary in Mississippi and Alabama (USA). The information gained from this approach yields improved estimates of the carbon stocks in this environment. Additionally, the stored sediment masses reflect the past, and potential future, persistence of the Grand Bay marsh under historical and present marsh-estuarine sediment exchange fluxes. Such improvements to both the sediment budget of recent marsh stratigraphic units and the spatial extent provide new resources for comparison with large-scale landscape models, the latter of which may be used, when validated, to predict future change and ecosystem transformations.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik