PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Rapid mapping of landslides using satellite SAR imagery: A progressive learning approach

Text

Rapid mapping of landslides using satellite SAR imagery: A progressive learning approach

Nikhil Prakash - Nama Orang; Andrea Manconi - Nama Orang; Alessandro Cesare Mondini - Nama Orang;

Rapid detection of landslides after an exceptional event is critical for planning effective disaster management. Previous works have typically used machine learning-based methods, including the recently popular deep-learning approaches, to identify characteristics surface features from satellite remote sensing data, especially from optical images. However, data acquisition from optical images is not possible in cloudy conditions, leading to unpredictable delays in any mapping task from future events. These methods also rely on large manually labelled inventories for training, which is often not available before the event. In this work, we propose an active training strategy to generate a landslide map after an event using the first available synthetic-aperture radar (SAR) image and improve it once subsequent cloud-free optical images are acquired. The proposed active learning workflow can start with a small (
∼
100
m
2
) and incomplete inventory,- and can grow the extent and completeness in iterative steps with manual updates after each step. This significantly reduces the slow manual mapping typically required for generating a large training inventory. We designed our experiments to map the landslides triggered by the
M
w
6.6 Hokkaido Eastern Iburi earthquake of 2018 in Japan using sequentially ALOS-2 (SAR) and PlanetScope (Optical) scenes in the order they are acquired. The choice of active learning prioritizes speed over accuracy. However, we note only a modest reduction in performance (
∼
10
%
drop in F1 and MCC scores), with our method allowing a preliminary landslide inventory to be completed within a single day. This is of major importance in disaster response, improving performance and reducing the potential subjectivity associated with manual mapping.


Ketersediaan
239551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2025
Deskripsi Fisik
12 hlm PDF, 5.502 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.25, February 2025
Subjek
Machine Learning
Landslide
Satellite SAR
Rapid mapping
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Rapid mapping of landslides using satellite SAR imagery: A progressive learning approach
    Rapid detection of landslides after an exceptional event is critical for planning effective disaster management. Previous works have typically used machine learning-based methods, including the recently popular deep-learning approaches, to identify characteristics surface features from satellite remote sensing data, especially from optical images. However, data acquisition from optical images is not possible in cloudy conditions, leading to unpredictable delays in any mapping task from future events. These methods also rely on large manually labelled inventories for training, which is often not available before the event. In this work, we propose an active training strategy to generate a landslide map after an event using the first available synthetic-aperture radar (SAR) image and improve it once subsequent cloud-free optical images are acquired. The proposed active learning workflow can start with a small ( ) and incomplete inventory,- and can grow the extent and completeness in iterative steps with manual updates after each step. This significantly reduces the slow manual mapping typically required for generating a large training inventory. We designed our experiments to map the landslides triggered by the 6.6 Hokkaido Eastern Iburi earthquake of 2018 in Japan using sequentially ALOS-2 (SAR) and PlanetScope (Optical) scenes in the order they are acquired. The choice of active learning prioritizes speed over accuracy. However, we note only a modest reduction in performance ( drop in F1 and MCC scores), with our method allowing a preliminary landslide inventory to be completed within a single day. This is of major importance in disaster response, improving performance and reducing the potential subjectivity associated with manual mapping.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik