PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Application of neural network to speed-up equilibrium calculations in compositional reservoir simulation

Text

Application of neural network to speed-up equilibrium calculations in compositional reservoir simulation

Wagner Q. Barros - Nama Orang; Adolfo P. Pires - Nama Orang;

Injecting carbon dioxide (CO2) into reservoirs is a widely recognized method for enhanced oil recovery (EOR) and carbon storage. This study introduces an innovative Artificial neural network (ANN)-based proxy model that significantly enhances the speed of determining equilibrium states in fluid systems, especially in the complex phase behavior of the CO2-hydrocarbon system. Notably, the model can handle up to three phases in isothermal compositional CO2 injection simulations, marking a significant advancement in this field. A key innovation of this work involves developing a new, streamlined approach for generating training data tailored to capture the compositional variations typical of CO2 injection for EOR or carbon storage. This method effectively segments the compositional range for each component, excluding the injected CO2, to generate representative oil samples. Pressure-composition diagrams are then generated for these samples within selected pressure intervals, and the resulting data is utilized for model training. Additionally, the ANN model incorporates a probability threshold to filter its predictions, ensuring results maintain the same standards of accuracy as traditional algorithms. This innovative model not only ensures consistency but also dramatically reduces computational time, as demonstrated through extensive numerical tests on various reservoir fluids. The ANN-based stability model showcases exceptional computational efficiency, reducing the time required to determine three-phase equilibrium status by over 95% compared to traditional methods. The model’s efficacy, evidenced by extensive testing on various reservoir fluids, highlights its potential to expedite multi-phase compositional simulations in CO2 injection scenarios.


Ketersediaan
251551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2021
Deskripsi Fisik
13 hlm PDF, 1.456 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.2, December 2021
Subjek
Artificial intelligence
Neural network
Compositional simulation
Flash calculation
Reservoir engineering
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Application of neural network to speed-up equilibrium calculations in compositional reservoir simulation
    Injecting carbon dioxide (CO2) into reservoirs is a widely recognized method for enhanced oil recovery (EOR) and carbon storage. This study introduces an innovative Artificial neural network (ANN)-based proxy model that significantly enhances the speed of determining equilibrium states in fluid systems, especially in the complex phase behavior of the CO2-hydrocarbon system. Notably, the model can handle up to three phases in isothermal compositional CO2 injection simulations, marking a significant advancement in this field. A key innovation of this work involves developing a new, streamlined approach for generating training data tailored to capture the compositional variations typical of CO2 injection for EOR or carbon storage. This method effectively segments the compositional range for each component, excluding the injected CO2, to generate representative oil samples. Pressure-composition diagrams are then generated for these samples within selected pressure intervals, and the resulting data is utilized for model training. Additionally, the ANN model incorporates a probability threshold to filter its predictions, ensuring results maintain the same standards of accuracy as traditional algorithms. This innovative model not only ensures consistency but also dramatically reduces computational time, as demonstrated through extensive numerical tests on various reservoir fluids. The ANN-based stability model showcases exceptional computational efficiency, reducing the time required to determine three-phase equilibrium status by over 95% compared to traditional methods. The model’s efficacy, evidenced by extensive testing on various reservoir fluids, highlights its potential to expedite multi-phase compositional simulations in CO2 injection scenarios.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Statistik Pengunjung Web

Hari Ini : 1 Pekan Terakhir : 1 Bulan Terakhir : Total Kunjungan :

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik