PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Near-surface velocity inversion from Rayleigh wave dispersion curves based on a differential evolution simulated annealing algorithm

Text

Near-surface velocity inversion from Rayleigh wave dispersion curves based on a differential evolution simulated annealing algorithm

Yaojun Wang - Nama Orang; Hua Wang - Nama Orang; Xijun Wua - Nama Orang; Keyu Chen - Nama Orang; Sheng Liu - Nama Orang; Xiaodong Deng - Nama Orang;

The utilization of urban underground space in a smart city requires an accurate understanding of the underground structure. As an effective technique, Rayleigh wave exploration can accurately obtain information on the subsurface. In particular, Rayleigh wave dispersion curves can be used to determine the near-surface shear-wave velocity structure. This is a typical multiparameter, high-dimensional nonlinear inverse problem because the velocities and thickness of each layer must be inverted simultaneously. Nonlinear methods such as simulated annealing (SA) are commonly used to solve this inverse problem. However, SA controls the iterative process though temperature rather than the error, and the search direction is random; hence, SA always falls into a local optimum when the temperature setting is inaccurate. Specifically, for the inversion of Rayleigh wave dispersion curves, the inversion accuracy will decrease with an increasing number of layers due to the greater number of inversion parameters and large dimension. To solve the above problems, we convert the multiparameter, high-dimensional inverse problem into multiple low-dimensional optimizations to improve the algorithm accuracy by incorporating the principle of block coordinate descent (BCD) into SA. Then, we convert the temperature control conditions in the original SA method into error control conditions. At the same time, we introduce the differential evolution (DE) method to ensure that the iterative error steadily decreases by correcting the iterative error direction in each iteration. Finally, the inversion stability is improved, and the proposed inversion method, the block coordinate descent differential evolution simulated annealing (BCDESA) algorithm, is implemented. The performance of BCDESA is validated by using both synthetic data and field data from western China. The results show that the BCDESA algorithm has stronger global optimization capabilities than SA, and the inversion results have higher stability and accuracy. In addition, synthetic data analysis also shows that BCDESA can avoid the problems of the conventional SA method, which assumes the S-wave velocity structure in advance. The robustness and adaptability of the algorithm are improved, and more accurate shear-wave velocity and thickness information can be extracted from Rayleigh wave dispersion curves.


Ketersediaan
262551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2021
Deskripsi Fisik
12 hlm PDF, 2.687 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.2, December 2021
Subjek
Simulated annealing
Differential evolution
Block coordinate descent
Surface wave dispersion curve
Nonlinear inversion
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Near-surface velocity inversion from Rayleigh wave dispersion curves based on a differential evolution simulated annealing algorithm
    The utilization of urban underground space in a smart city requires an accurate understanding of the underground structure. As an effective technique, Rayleigh wave exploration can accurately obtain information on the subsurface. In particular, Rayleigh wave dispersion curves can be used to determine the near-surface shear-wave velocity structure. This is a typical multiparameter, high-dimensional nonlinear inverse problem because the velocities and thickness of each layer must be inverted simultaneously. Nonlinear methods such as simulated annealing (SA) are commonly used to solve this inverse problem. However, SA controls the iterative process though temperature rather than the error, and the search direction is random; hence, SA always falls into a local optimum when the temperature setting is inaccurate. Specifically, for the inversion of Rayleigh wave dispersion curves, the inversion accuracy will decrease with an increasing number of layers due to the greater number of inversion parameters and large dimension. To solve the above problems, we convert the multiparameter, high-dimensional inverse problem into multiple low-dimensional optimizations to improve the algorithm accuracy by incorporating the principle of block coordinate descent (BCD) into SA. Then, we convert the temperature control conditions in the original SA method into error control conditions. At the same time, we introduce the differential evolution (DE) method to ensure that the iterative error steadily decreases by correcting the iterative error direction in each iteration. Finally, the inversion stability is improved, and the proposed inversion method, the block coordinate descent differential evolution simulated annealing (BCDESA) algorithm, is implemented. The performance of BCDESA is validated by using both synthetic data and field data from western China. The results show that the BCDESA algorithm has stronger global optimization capabilities than SA, and the inversion results have higher stability and accuracy. In addition, synthetic data analysis also shows that BCDESA can avoid the problems of the conventional SA method, which assumes the S-wave velocity structure in advance. The robustness and adaptability of the algorithm are improved, and more accurate shear-wave velocity and thickness information can be extracted from Rayleigh wave dispersion curves.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik