PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Random forest for spatial prediction of censored response variables

Text

Random forest for spatial prediction of censored response variables

Francky Fouedjio - Nama Orang;

The spatial prediction of a continuous response variable when spatially exhaustive predictor variables are available within the region under study has become ubiquitous in many geoscience fields. The response variable is often subject to detection limits due to limitations of the measuring instrument or the sampling protocol used. Consequently, the response variable's observations are censored (left-censored, right-censored, or interval-censored). Machine learning methods dedicated to the spatial prediction of uncensored response variables can not explicitly account for the response variable's censored observations. In such cases, they are routinely applied through ad hoc approaches such as ignoring the response variable's censored observations or replacing them with arbitrary values. Therefore, the response variable's spatial prediction may be inaccurate and sensitive to the assumptions and approximations involved in those arbitrary choices. This paper introduces a random forest-based machine learning method for spatially predicting a censored response variable, in which the response variable's censored observations are explicitly taken into account. The basic idea consists of building an ensemble of regression tree predictors by training the classical regression random forest on the subset of data containing only the response variable's uncensored observations. Then, the principal component analysis applied to this ensemble allows translating the response variable's observations (uncensored and censored) into a linear equalities and inequalities system. This system of linear equalities and inequalities is solved through randomized quadratic programming, which allows obtaining an ensemble of reconstructed regression tree predictors that exactly honor the response variable's observations (uncensored and censored). The response variable's spatial prediction is then obtained by averaging this latter ensemble. The effectiveness of the proposed machine learning method is illustrated on simulated data for which ground truth is available and showcased on real-world data, including geochemical data. The results suggest that the proposed machine learning technique allows greater utilization of the response variable's censored observations than ad hoc methods.


Ketersediaan
263551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2021
Deskripsi Fisik
13 hlm PDF, 5.490 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.2, December 2021
Subjek
Spatial prediction
Principal component analysis
Quadratic programming
Censored observations
Exact observations
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Random forest for spatial prediction of censored response variables
    The spatial prediction of a continuous response variable when spatially exhaustive predictor variables are available within the region under study has become ubiquitous in many geoscience fields. The response variable is often subject to detection limits due to limitations of the measuring instrument or the sampling protocol used. Consequently, the response variable's observations are censored (left-censored, right-censored, or interval-censored). Machine learning methods dedicated to the spatial prediction of uncensored response variables can not explicitly account for the response variable's censored observations. In such cases, they are routinely applied through ad hoc approaches such as ignoring the response variable's censored observations or replacing them with arbitrary values. Therefore, the response variable's spatial prediction may be inaccurate and sensitive to the assumptions and approximations involved in those arbitrary choices. This paper introduces a random forest-based machine learning method for spatially predicting a censored response variable, in which the response variable's censored observations are explicitly taken into account. The basic idea consists of building an ensemble of regression tree predictors by training the classical regression random forest on the subset of data containing only the response variable's uncensored observations. Then, the principal component analysis applied to this ensemble allows translating the response variable's observations (uncensored and censored) into a linear equalities and inequalities system. This system of linear equalities and inequalities is solved through randomized quadratic programming, which allows obtaining an ensemble of reconstructed regression tree predictors that exactly honor the response variable's observations (uncensored and censored). The response variable's spatial prediction is then obtained by averaging this latter ensemble. The effectiveness of the proposed machine learning method is illustrated on simulated data for which ground truth is available and showcased on real-world data, including geochemical data. The results suggest that the proposed machine learning technique allows greater utilization of the response variable's censored observations than ad hoc methods.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik