PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Sparse inversion-based seismic random noise attenuation via self-paced learning

Text

Sparse inversion-based seismic random noise attenuation via self-paced learning

Yang Yang - Nama Orang; Zhiguo Wang - Nama Orang; Jinghuai Gao - Nama Orang; Naihao Liu - Nama Orang; Zhen Li - Nama Orang;

Seismic random noise reduction is an important task in seismic data processing at the Chinese loess plateau area, which benefits the geologic structure interpretation and further reservoir prediction. The sparse inversion is one of the widely used tools for seismic random noise reduction, which is often solved via the sparse approximation with a regularization term. The ℓ1 norm and total variation (TV) regularization term are two commonly used regularization terms. However, the ℓ1 norm is only a relaxation of the ℓ0 norm, which cannot always provide a sparse result. The TV regularization term may provide unexpected staircase artifacts. To avoid these disadvantages, we proposed a workflow for seismic random noise reduction by using the self-paced learning (SPL) scheme and a sparse representation (i.e. the continuous wavelet transform, CWT) with a mixed norm regularization, which includes the ℓp norm and the TV regularization. In the implementation, the SPL, which is inspired by human cognitive learning, is introduced to avoid the bad minima of the non-convex cost function. The SPL can first select the high signal-to-noise ratio (SNR) seismic data and then gradually select the low SNR seismic data into the proposed workflow. Moreover, the generalized Beta wavelet (GBW) is adopted as the basic wavelet of the CWT to better match for seismic wavelets and then obtain a more localized time-frequency (TF) representation. It should be noted that the GBW can easily constitute a tight frame, which saves the calculation time. Synthetic and field data examples are adopted to demonstrate the effectiveness of the proposed workflow for effectively suppressing seismic random noises and accurately preserving valid seismic reflections.


Ketersediaan
266551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2021
Deskripsi Fisik
11 hlm PDF, 3.665 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.2, December 2021
Subjek
-
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Sparse inversion-based seismic random noise attenuation via self-paced learning
    Seismic random noise reduction is an important task in seismic data processing at the Chinese loess plateau area, which benefits the geologic structure interpretation and further reservoir prediction. The sparse inversion is one of the widely used tools for seismic random noise reduction, which is often solved via the sparse approximation with a regularization term. The ℓ1 norm and total variation (TV) regularization term are two commonly used regularization terms. However, the ℓ1 norm is only a relaxation of the ℓ0 norm, which cannot always provide a sparse result. The TV regularization term may provide unexpected staircase artifacts. To avoid these disadvantages, we proposed a workflow for seismic random noise reduction by using the self-paced learning (SPL) scheme and a sparse representation (i.e. the continuous wavelet transform, CWT) with a mixed norm regularization, which includes the ℓp norm and the TV regularization. In the implementation, the SPL, which is inspired by human cognitive learning, is introduced to avoid the bad minima of the non-convex cost function. The SPL can first select the high signal-to-noise ratio (SNR) seismic data and then gradually select the low SNR seismic data into the proposed workflow. Moreover, the generalized Beta wavelet (GBW) is adopted as the basic wavelet of the CWT to better match for seismic wavelets and then obtain a more localized time-frequency (TF) representation. It should be noted that the GBW can easily constitute a tight frame, which saves the calculation time. Synthetic and field data examples are adopted to demonstrate the effectiveness of the proposed workflow for effectively suppressing seismic random noises and accurately preserving valid seismic reflections.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik