PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Optimized feature selection assists lithofacies machine learning with sparse well log data combined with calculated  ttributes in a gradational fluvial sequence

Text

Optimized feature selection assists lithofacies machine learning with sparse well log data combined with calculated ttributes in a gradational fluvial sequence

David A. Wood - Nama Orang;

Machine learning (ML) to predict lithofacies from sparse suites of well-log data is difficult in laterally and vertically heterogeneous reservoir formations in oil and gas fields. Meandering, braided fluviatile depositional environments tend to form clastic sequences with laterally discontinuous layers due to the continuous shifting of relatively narrow sandstone channels. Three cored wellbores drilled through such a reservoir in a large oil field, with just four recorded well logs available, are used to classify four lithofacies using ML models. To augment the well-log data, six derivative and volatility attributes were calculated from the recorded gamma ray and density logs, providing sixteen log features for the ML models to select from. A novel, multiple-optimizer feature selection technique was developed to identify high-performing feature combinations with which seven ML models were used to predict lithofacies assisted by multi-k-fold cross validation. Feature combinations with just seven to nine selected log features achieved overall ML lithofacies accuracy of 0.87 for two wells used for training and validation. When the trained ML models were applied to a third well for testing, lithofacies ML prediction accuracy declined to 0.65 for the best performing extreme gradient boosting model with seven features. However, an accuracy of ∼0.76 was achieved by that model in predicting the presence of the pay bearing sandstone and siltstone lithofacies in the test well. A model using only the four recorded well logs was only able to predict the pay-bearing lithofacies with ∼0.6 accuracy. Annotated confusion matrices and feature importance analysis provide additional insight to ML model performance and identify the log attributes that are most influential in enhancing lithofacies prediction.


Ketersediaan
288551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2022
Deskripsi Fisik
16 hlm PDF, 10.025 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.3, December 2022
Subjek
Derivative/volatility log attributes
Sparse well-log datasets
Multi-k-fold analysis
Optimizer comparisons
Lithofacies imbalance
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Optimized feature selection assists lithofacies machine learning with sparse well log data combined with calculated attributes in a gradational fluvial sequence
    Machine learning (ML) to predict lithofacies from sparse suites of well-log data is difficult in laterally and vertically heterogeneous reservoir formations in oil and gas fields. Meandering, braided fluviatile depositional environments tend to form clastic sequences with laterally discontinuous layers due to the continuous shifting of relatively narrow sandstone channels. Three cored wellbores drilled through such a reservoir in a large oil field, with just four recorded well logs available, are used to classify four lithofacies using ML models. To augment the well-log data, six derivative and volatility attributes were calculated from the recorded gamma ray and density logs, providing sixteen log features for the ML models to select from. A novel, multiple-optimizer feature selection technique was developed to identify high-performing feature combinations with which seven ML models were used to predict lithofacies assisted by multi-k-fold cross validation. Feature combinations with just seven to nine selected log features achieved overall ML lithofacies accuracy of 0.87 for two wells used for training and validation. When the trained ML models were applied to a third well for testing, lithofacies ML prediction accuracy declined to 0.65 for the best performing extreme gradient boosting model with seven features. However, an accuracy of ∼0.76 was achieved by that model in predicting the presence of the pay bearing sandstone and siltstone lithofacies in the test well. A model using only the four recorded well logs was only able to predict the pay-bearing lithofacies with ∼0.6 accuracy. Annotated confusion matrices and feature importance analysis provide additional insight to ML model performance and identify the log attributes that are most influential in enhancing lithofacies prediction.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik