PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Improved frost forecast using machine learning methods

Text

Improved frost forecast using machine learning methods

Jose Roberto Rozante - Nama Orang; Enver Ramirez - Nama Orang; Diego Ramirez - Nama Orang; Gabriela Rozante - Nama Orang;

Frosts are one of the atmospheric phenomena with one of the larger negative effects on the agricultural sector in the southern region of Brazil, therefore, an earlier forecast can minimize their impacts. In the present work, artificial neural networks (ANNs) techniques were applied in order to improve the predicting capabilities of frost events in southern Brazil. In the study, two multilayer perceptron (MLP) ANNs were built, one with ADAM optimizer and the other with SGD. The input parameters MLP-ANNs were numerical predictions of the Eta model. The ANNs were trained using four years (2012–2015), while validation and testing were performed using 2016 and 2017, respectively. An episode of frost that occurred on May 21st, 2018, related to an intense cold air mass, was also utilized to evaluate the performance of the ANNs. The best configurations (topologies and hyperparameters) of the ANNs were identified through experiments, using the highest accuracy obtained during the validation period as a metric. The results of the ANNs with ADAM and SGD optimizers were compared with the predictions of the Eta model. For the case study, an additional comparison against the operational frost index (IG) from the National Institute for Space Research (INPE) was also included. The performance of both ANNs (properly configured) with ADAM and SGD optimizers are comparable one to the other. And both are significantly better compared to the Eta model. The ANNs were able to drastically reduce the underestimation trends of frost events caused by the warm bias of the Eta model. The ANNs also indicated more satisfactory performances when compared to the INPE IG. In general, the ANNs were able to identify deficiencies in Eta predictions, and consequently improve their results. In this sense, the use of ANNs to predict frost events can be a very useful tool in an operational environment.


Ketersediaan
302551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2023
Deskripsi Fisik
18 hlm PDF, 19.643 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.4, December 2023
Subjek
Deep learning
Artificial neural networks
Frost
Multilayer perceptron frost index
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Improved frost forecast using machine learning methods
    Frosts are one of the atmospheric phenomena with one of the larger negative effects on the agricultural sector in the southern region of Brazil, therefore, an earlier forecast can minimize their impacts. In the present work, artificial neural networks (ANNs) techniques were applied in order to improve the predicting capabilities of frost events in southern Brazil. In the study, two multilayer perceptron (MLP) ANNs were built, one with ADAM optimizer and the other with SGD. The input parameters MLP-ANNs were numerical predictions of the Eta model. The ANNs were trained using four years (2012–2015), while validation and testing were performed using 2016 and 2017, respectively. An episode of frost that occurred on May 21st, 2018, related to an intense cold air mass, was also utilized to evaluate the performance of the ANNs. The best configurations (topologies and hyperparameters) of the ANNs were identified through experiments, using the highest accuracy obtained during the validation period as a metric. The results of the ANNs with ADAM and SGD optimizers were compared with the predictions of the Eta model. For the case study, an additional comparison against the operational frost index (IG) from the National Institute for Space Research (INPE) was also included. The performance of both ANNs (properly configured) with ADAM and SGD optimizers are comparable one to the other. And both are significantly better compared to the Eta model. The ANNs were able to drastically reduce the underestimation trends of frost events caused by the warm bias of the Eta model. The ANNs also indicated more satisfactory performances when compared to the INPE IG. In general, the ANNs were able to identify deficiencies in Eta predictions, and consequently improve their results. In this sense, the use of ANNs to predict frost events can be a very useful tool in an operational environment.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik