PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Uncertainty and explainable analysis of machine learning model for reconstruction of sonic slowness logs

Text

Uncertainty and explainable analysis of machine learning model for reconstruction of sonic slowness logs

Hua Wang - Nama Orang; Yuqiong Wu - Nama Orang; Yushun Zhang - Nama Orang; Fuqiang Lai - Nama Orang; Zhou Feng - Nama Orang; Bing Xie - Nama Orang; Ailin Zhao - Nama Orang;

Logs are valuable information for oil and gas fields as they help to determine the lithology of the formations surrounding the borehole and the location and reserves of subsurface oil and gas reservoirs. However, important logs are often missing in horizontal or old wells, which poses a challenge in field applications. To address this issue, conventional methods involve supplementing the missing logs by either combining geological experience and referring data from nearby boreholes or reconstructing them directly using the remaining logs in the same borehole. Nevertheless, there is currently no quantitative evaluation for the quality and rationality of the constructed log. In this paper, we utilize data from the 2020 machine learning competition of the Society of Petrophysicists and Logging Analysts (SPWLA), which aims to predict the missing compressional wave slowness (DTC) and shear wave slowness (DTS) logs using other logs in the same borehole. We employ the natural gradient boosting (NGBoost) algorithm to construct an Ensemble Learning model that can predicate the results as well as their uncertainty. Furthermore, we combine the SHAP (SHapley Additive exPlanations) method to investigate the interpretability of the machine learning model. We compare the performance of the NGBosst model with four other commonly used Ensemble Learning methods, including Random Forest, GBDT, XGBoost, LightGBM. The results show that the NGBoost model performs well in the testing set and can provide a probability distribution for the prediction results. This distribution allows petrophysicists to quantitatively analyze the confidence interval of the constructed log. In addition, the variance of the probability distribution of the predicted log can be used to justify the quality of the constructed log. Using the SHAP explainable machine learning model, we calculate the importance of each input log to the predicted results as well as the coupling relationship among input logs. Our findings reveal that the NGBoost model tends to provide greater slowness prediction results when the neutron porosity (CNC) and gamma ray (GR) are large, which is consistent with the cognition of petrophysical models. Furthermore, the machine learning model can capture the influence of the changing borehole caliper on slowness, where the influence of borehole caliper on slowness is complex and not easy to establish a direct relationship. These findings are in line with the physical principle of borehole acoustics. Finally, by using the explainable machine learning model, we observe that although we did not correct the effect of borehole caliper on the neutron porosity log through preprocessing, the machine learning model assigned a greater importance to the influence of the caliper, achieving the same effect as caliper correction.


Ketersediaan
310551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2023
Deskripsi Fisik
17 hlm PDF, 18.638 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.4, December 2023
Subjek
Quality control
Missing log construction
Ensemble learning
NGBoost
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Uncertainty and explainable analysis of machine learning model for reconstruction of sonic slowness logs
    Logs are valuable information for oil and gas fields as they help to determine the lithology of the formations surrounding the borehole and the location and reserves of subsurface oil and gas reservoirs. However, important logs are often missing in horizontal or old wells, which poses a challenge in field applications. To address this issue, conventional methods involve supplementing the missing logs by either combining geological experience and referring data from nearby boreholes or reconstructing them directly using the remaining logs in the same borehole. Nevertheless, there is currently no quantitative evaluation for the quality and rationality of the constructed log. In this paper, we utilize data from the 2020 machine learning competition of the Society of Petrophysicists and Logging Analysts (SPWLA), which aims to predict the missing compressional wave slowness (DTC) and shear wave slowness (DTS) logs using other logs in the same borehole. We employ the natural gradient boosting (NGBoost) algorithm to construct an Ensemble Learning model that can predicate the results as well as their uncertainty. Furthermore, we combine the SHAP (SHapley Additive exPlanations) method to investigate the interpretability of the machine learning model. We compare the performance of the NGBosst model with four other commonly used Ensemble Learning methods, including Random Forest, GBDT, XGBoost, LightGBM. The results show that the NGBoost model performs well in the testing set and can provide a probability distribution for the prediction results. This distribution allows petrophysicists to quantitatively analyze the confidence interval of the constructed log. In addition, the variance of the probability distribution of the predicted log can be used to justify the quality of the constructed log. Using the SHAP explainable machine learning model, we calculate the importance of each input log to the predicted results as well as the coupling relationship among input logs. Our findings reveal that the NGBoost model tends to provide greater slowness prediction results when the neutron porosity (CNC) and gamma ray (GR) are large, which is consistent with the cognition of petrophysical models. Furthermore, the machine learning model can capture the influence of the changing borehole caliper on slowness, where the influence of borehole caliper on slowness is complex and not easy to establish a direct relationship. These findings are in line with the physical principle of borehole acoustics. Finally, by using the explainable machine learning model, we observe that although we did not correct the effect of borehole caliper on the neutron porosity log through preprocessing, the machine learning model assigned a greater importance to the influence of the caliper, achieving the same effect as caliper correction.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik