PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Enhanced permeability prediction in porous media using particle swarm optimization with multi-source integration

Text

Enhanced permeability prediction in porous media using particle swarm optimization with multi-source integration

Zhiping Chen - Nama Orang; Jia Zhang - Nama Orang; Daren Zhang - Nama Orang; Xiaolin Chang - Nama Orang; Wei Zhou - Nama Orang;

Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues. However, the complexity of porous media often limits the effectiveness of individual prediction methods. This study introduces a novel Particle Swarm Optimization-based Permeability Integrated Prediction model (PSO-PIP), which incorporates a particle swarm optimization algorithm enhanced with dynamic clustering and adaptive parameter tuning (KGPSO). The model integrates multi-source data from the Lattice Boltzmann Method (LBM), Pore Network Modeling (PNM), and Finite Difference Method (FDM). By assigning optimal weight coefficients to the outputs of these methods, the model minimizes deviations from actual values and enhances permeability prediction performance. Initially, the computational performances of the LBM, PNM, and FDM are comparatively analyzed on datasets consisting of sphere packings and real rock samples. It is observed that these methods exhibit computational biases in certain permeability ranges. The PSO-PIP model is proposed to combine the strengths of each computational approach and mitigate their limitations. The PSO-PIP model consistently produces predictions that are highly congruent with actual permeability values across all prediction intervals, significantly enhancing prediction accuracy. The outcomes of this study provide a new tool and perspective for the comprehensive, rapid, and accurate prediction of permeability in porous media.


Ketersediaan
317551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2024
Deskripsi Fisik
12 hlm PDF, 9.874 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.5, December 2024
Subjek
Porous media
Particle swarm optimization algorithm
Multi-source data integration
Permeability prediction
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Enhanced permeability prediction in porous media using particle swarm optimization with multi-source integration
    Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues. However, the complexity of porous media often limits the effectiveness of individual prediction methods. This study introduces a novel Particle Swarm Optimization-based Permeability Integrated Prediction model (PSO-PIP), which incorporates a particle swarm optimization algorithm enhanced with dynamic clustering and adaptive parameter tuning (KGPSO). The model integrates multi-source data from the Lattice Boltzmann Method (LBM), Pore Network Modeling (PNM), and Finite Difference Method (FDM). By assigning optimal weight coefficients to the outputs of these methods, the model minimizes deviations from actual values and enhances permeability prediction performance. Initially, the computational performances of the LBM, PNM, and FDM are comparatively analyzed on datasets consisting of sphere packings and real rock samples. It is observed that these methods exhibit computational biases in certain permeability ranges. The PSO-PIP model is proposed to combine the strengths of each computational approach and mitigate their limitations. The PSO-PIP model consistently produces predictions that are highly congruent with actual permeability values across all prediction intervals, significantly enhancing prediction accuracy. The outcomes of this study provide a new tool and perspective for the comprehensive, rapid, and accurate prediction of permeability in porous media.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik