PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of High-resolution seismic inversion method based on joint data-driven in the time-frequency domain

Text

High-resolution seismic inversion method based on joint data-driven in the time-frequency domain

Yu Liu - Nama Orang; Sisi Miao - Nama Orang;

Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains. Time-domain inversion has stronger stability and noise resistance compared to frequency-domain inversion. Frequency domain inversion has stronger ability to identify small-scale bodies and higher inversion resolution. Therefore, the research on the joint inversion method in the time-frequency domain is of great significance for improving the inversion resolution, stability, and noise resistance. The introduction of prior information constraints can effectively reduce ambiguity in the inversion process. However, the existing model-driven time-frequency joint inversion assumes a specific prior distribution of the reservoir. These methods do not consider the original features of the data and are difficult to describe the relationship between time-domain features and frequency-domain features. Therefore, this paper proposes a high-resolution seismic inversion method based on joint data-driven in the time-frequency domain. The method is based on the impedance and reflectivity samples from logging, using joint dictionary learning to obtain adaptive feature information of the reservoir, and using sparse coefficients to capture the intrinsic relationship between impedance and reflectivity. The optimization result of the inversion is achieved through the regularization term of the joint dictionary sparse representation. We have finally achieved an inversion method that combines constraints on time-domain features and frequency features. By testing the model data and field data, the method has higher resolution in the inversion results and good noise resistance.


Ketersediaan
323551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2024
Deskripsi Fisik
13 hlm PDF, 15.975 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.5, December 2024
Subjek
Data-driven
Time-frequency domain
Joint dictionary learning
High-resolution inversion
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • High-resolution seismic inversion method based on joint data-driven in the time-frequency domain
    Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains. Time-domain inversion has stronger stability and noise resistance compared to frequency-domain inversion. Frequency domain inversion has stronger ability to identify small-scale bodies and higher inversion resolution. Therefore, the research on the joint inversion method in the time-frequency domain is of great significance for improving the inversion resolution, stability, and noise resistance. The introduction of prior information constraints can effectively reduce ambiguity in the inversion process. However, the existing model-driven time-frequency joint inversion assumes a specific prior distribution of the reservoir. These methods do not consider the original features of the data and are difficult to describe the relationship between time-domain features and frequency-domain features. Therefore, this paper proposes a high-resolution seismic inversion method based on joint data-driven in the time-frequency domain. The method is based on the impedance and reflectivity samples from logging, using joint dictionary learning to obtain adaptive feature information of the reservoir, and using sparse coefficients to capture the intrinsic relationship between impedance and reflectivity. The optimization result of the inversion is achieved through the regularization term of the joint dictionary sparse representation. We have finally achieved an inversion method that combines constraints on time-domain features and frequency features. By testing the model data and field data, the method has higher resolution in the inversion results and good noise resistance.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik