PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Locally varying geostatistical machine learning for spatial prediction

Text

Locally varying geostatistical machine learning for spatial prediction

Francky Fouedjio - Nama Orang; Emet Arya - Nama Orang;

Machine learning methods dealing with the spatial auto-correlation of the response variable have garnered significant attention in the context of spatial prediction. Nonetheless, under these methods, the relationship between the response variable and explanatory variables is assumed to be homogeneous throughout the entire study area. This assumption, known as spatial stationarity, is very questionable in real-world situations due to the influence of contextual factors. Therefore, allowing the relationship between the target variable and predictor variables to vary spatially within the study region is more reasonable. However, existing machine learning techniques accounting for the spatially varying relationship between the dependent variable and the predictor variables do not capture the spatial auto-correlation of the dependent variable itself. Moreover, under these techniques, local machine learning models are effectively built using only fewer observations, which can lead to well-known issues such as over-fitting and the curse of dimensionality. This paper introduces a novel geostatistical machine learning approach where both the spatial auto-correlation of the response variable and the spatial non-stationarity of the regression relationship between the response and predictor variables are explicitly considered. The basic idea consists of relying on the local stationarity assumption to build a collection of local machine learning models while leveraging on the local spatial auto-correlation of the response variable to locally augment the training dataset. The proposed method’s effectiveness is showcased via experiments conducted on synthetic spatial data with known characteristics as well as real-world spatial data. In the synthetic (resp. real) case study, the proposed method’s predictive accuracy, as indicated by the Root Mean Square Error (RMSE) on the test set, is 17% (resp. 7%) better than that of popular machine learning methods dealing with the response variable’s spatial auto-correlation. Additionally, this method is not only valuable for spatial prediction but also offers a deeper understanding of how the relationship between the target and predictor variables varies across space, and it can even be used to investigate the local significance of predictor variables.


Ketersediaan
324551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2024
Deskripsi Fisik
18 hlm PDF, 9.301 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.5, December 2024
Subjek
Machine Learning
Geostatistics
Data augmentation
Local stationarity
Conditional simulation
Spatial auto-correlation
Spatial non-stationarity
Spatial uncertainty
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Locally varying geostatistical machine learning for spatial prediction
    Machine learning methods dealing with the spatial auto-correlation of the response variable have garnered significant attention in the context of spatial prediction. Nonetheless, under these methods, the relationship between the response variable and explanatory variables is assumed to be homogeneous throughout the entire study area. This assumption, known as spatial stationarity, is very questionable in real-world situations due to the influence of contextual factors. Therefore, allowing the relationship between the target variable and predictor variables to vary spatially within the study region is more reasonable. However, existing machine learning techniques accounting for the spatially varying relationship between the dependent variable and the predictor variables do not capture the spatial auto-correlation of the dependent variable itself. Moreover, under these techniques, local machine learning models are effectively built using only fewer observations, which can lead to well-known issues such as over-fitting and the curse of dimensionality. This paper introduces a novel geostatistical machine learning approach where both the spatial auto-correlation of the response variable and the spatial non-stationarity of the regression relationship between the response and predictor variables are explicitly considered. The basic idea consists of relying on the local stationarity assumption to build a collection of local machine learning models while leveraging on the local spatial auto-correlation of the response variable to locally augment the training dataset. The proposed method’s effectiveness is showcased via experiments conducted on synthetic spatial data with known characteristics as well as real-world spatial data. In the synthetic (resp. real) case study, the proposed method’s predictive accuracy, as indicated by the Root Mean Square Error (RMSE) on the test set, is 17% (resp. 7%) better than that of popular machine learning methods dealing with the response variable’s spatial auto-correlation. Additionally, this method is not only valuable for spatial prediction but also offers a deeper understanding of how the relationship between the target and predictor variables varies across space, and it can even be used to investigate the local significance of predictor variables.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik