PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Prediction of seismic-induced bending moment and lateral displacement in closed and open-ended pipe piles: A genetic programming approach

Text

Prediction of seismic-induced bending moment and lateral displacement in closed and open-ended pipe piles: A genetic programming approach

Laith Sadik - Nama Orang; Saif Alzabeebee - Nama Orang; Suraparb Keawsawasvong - Nama Orang; Duaa Al-Jeznawi - Nama Orang; Musab A.Q. Al-Janabi - Nama Orang;

Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment, typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction. Despite recent advancements in machine learning techniques, there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available. This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles, employing a Genetic Programming (GP) approach. Utilizing a soil dataset extracted from existing literature, comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading, the study intentionally limited input parameters to three features to enhance model simplicity: Standard Penetration Test (SPT) corrected blow count (N60), Peak Ground Acceleration (PGA), and pile slenderness ratio (L/D). Model performance was assessed via coefficient of determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE), with R2 values ranging from 0.95 to 0.99 for the training set, and from 0.92 to 0.98 for the testing set, which indicate of high accuracy of prediction. Finally, the study concludes with a sensitivity analysis, evaluating the influence of each input parameter across different pile types.


Ketersediaan
326551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2024
Deskripsi Fisik
14 hlm PDF, 8.793 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.5, December 2024
Subjek
Machine Learning
Genetic programming
Pipe piles
Lateral response
Bending moment
Earthquake loading
Standard penetration test
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Prediction of seismic-induced bending moment and lateral displacement in closed and open-ended pipe piles: A genetic programming approach
    Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment, typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction. Despite recent advancements in machine learning techniques, there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available. This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles, employing a Genetic Programming (GP) approach. Utilizing a soil dataset extracted from existing literature, comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading, the study intentionally limited input parameters to three features to enhance model simplicity: Standard Penetration Test (SPT) corrected blow count (N60), Peak Ground Acceleration (PGA), and pile slenderness ratio (L/D). Model performance was assessed via coefficient of determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE), with R2 values ranging from 0.95 to 0.99 for the training set, and from 0.92 to 0.98 for the testing set, which indicate of high accuracy of prediction. Finally, the study concludes with a sensitivity analysis, evaluating the influence of each input parameter across different pile types.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik