PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Reconstruction of lithofacies using a supervised Self-Organizing Map: Application in pseudo-wells based on a synthetic geologic cross-section
Penanda Bagikan

Text

Reconstruction of lithofacies using a supervised Self-Organizing Map: Application in pseudo-wells based on a synthetic geologic cross-section

Carreira V.R. - Nama Orang; Bijani R. - Nama Orang; Ponte-Neto C.F. - Nama Orang;

Recently, machine learning (ML) has been considered a powerful technological element of different society areas. To transform the computer into a decision maker, several sophisticated methods and algorithms are constantly created and analyzed. In geophysics, both supervised and unsupervised ML methods have dramatically contributed to the development of seismic and well-log data interpretation. In well-logging, ML algorithms are well-suited for lithologic reconstruction problems, once there is no analytical expressions for computing well-log data produced by a particular rock unit. Additionally, supervised ML methods are strongly dependent on a accurate-labeled training data-set, which is not a simple task to achieve, due to data absences or corruption. Once an adequate supervision is performed, the classification outputs tend to be more accurate than unsupervised methods. This work presents a supervised version of a Self-Organizing Map, named as SSOM, to solve a lithologic reconstruction problem from well-log data. Firstly, we go for a more controlled problem and simulate well-log data directly from an interpreted geologic cross-section. We then define two specific training data-sets composed by density (RHOB), sonic (DT), spontaneous potential (SP) and gamma-ray (GR) logs, all simulated through a Gaussian distribution function per lithology. Once the training data-set is created, we simulate a particular pseudo-well, referred to as classification well, for defining controlled tests. First one comprises a training data-set with no labeled log data of the simulated fault zone. In the second test, we intentionally improve the training data-set with the fault. To bespeak the obtained results for each test, we analyze confusion matrices, logplots, accuracy and precision. Apart from very thin layer misclassifications, the SSOM provides reasonable lithologic reconstructions, especially when the improved training data-set is considered for supervision. The set of numerical experiments shows that our SSOM is extremely well-suited for a supervised lithologic reconstruction, especially to recover lithotypes that are weakly-sampled in the training log-data. On the other hand, some misclassifications are also observed when the cortex could not group the slightly different lithologies.


Ketersediaan
#
Perpustakaan BIG (Eksternal Harddisk) 551
327
Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2024
Deskripsi Fisik
13 hlm PDF, 3.426 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.5, December 2024
Subjek
Supervised machine learning
Self-Organizing Maps
Synthetic well-log data
Classification of lithofacies
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Reconstruction of lithofacies using a supervised Self-Organizing Map: Application in pseudo-wells based on a synthetic geologic cross-section
    Recently, machine learning (ML) has been considered a powerful technological element of different society areas. To transform the computer into a decision maker, several sophisticated methods and algorithms are constantly created and analyzed. In geophysics, both supervised and unsupervised ML methods have dramatically contributed to the development of seismic and well-log data interpretation. In well-logging, ML algorithms are well-suited for lithologic reconstruction problems, once there is no analytical expressions for computing well-log data produced by a particular rock unit. Additionally, supervised ML methods are strongly dependent on a accurate-labeled training data-set, which is not a simple task to achieve, due to data absences or corruption. Once an adequate supervision is performed, the classification outputs tend to be more accurate than unsupervised methods. This work presents a supervised version of a Self-Organizing Map, named as SSOM, to solve a lithologic reconstruction problem from well-log data. Firstly, we go for a more controlled problem and simulate well-log data directly from an interpreted geologic cross-section. We then define two specific training data-sets composed by density (RHOB), sonic (DT), spontaneous potential (SP) and gamma-ray (GR) logs, all simulated through a Gaussian distribution function per lithology. Once the training data-set is created, we simulate a particular pseudo-well, referred to as classification well, for defining controlled tests. First one comprises a training data-set with no labeled log data of the simulated fault zone. In the second test, we intentionally improve the training data-set with the fault. To bespeak the obtained results for each test, we analyze confusion matrices, logplots, accuracy and precision. Apart from very thin layer misclassifications, the SSOM provides reasonable lithologic reconstructions, especially when the improved training data-set is considered for supervision. The set of numerical experiments shows that our SSOM is extremely well-suited for a supervised lithologic reconstruction, especially to recover lithotypes that are weakly-sampled in the training log-data. On the other hand, some misclassifications are also observed when the cortex could not group the slightly different lithologies.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Statistik Pengunjung Web

Hari Ini : 572 1 Pekan Terakhir : 3889 1 Bulan Terakhir : 102061 Total Kunjungan : 347551

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik