PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of The 3-billion fossil question: How to automate classification of microfossils

Text

The 3-billion fossil question: How to automate classification of microfossils

Iver Martinsen - Nama Orang; David Wade - Nama Orang; Benjamin Ricaud - Nama Orang; Fred Godtliebsen - Nama Orang;

Microfossil classification is an important discipline in subsurface exploration, for both oil & gas and Carbon Capture and Storage (CCS). The abundance and distribution of species found in sedimentary rocks provide valuable information about the age and depositional environment. However, the analysis is difficult and time-consuming, as it is based on manual work by human experts. Attempts to automate this process face two key challenges: (1) the input data are very large - our dataset is projected to grow to 3 billion microfossils, and (2) there are not enough labeled data to use the standard procedure of training a deep learning classifier. We propose an efficient pipeline for processing and grouping fossils by genus, or even species, from microscope slides using self-supervised learning. First we show how to efficiently extract crops from whole slide images by adapting previously trained object detection algorithms. Second, we provide a comparison of a range of self-supervised learning methods to classify and identify microfossils from very few labels. We obtain excellent results with both convolutional neural networks and vision transformers fine-tuned by self-supervision. Our approach is fast and computationally light, providing a handy tool for geologists working with microfossils.


Ketersediaan
331551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2024
Deskripsi Fisik
9 hlm PDF, 3.014 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.5, December 2024
Subjek
Deep learning
Self-supervised learning
Microfossils
Palynology
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • The 3-billion fossil question: How to automate classification of microfossils
    Microfossil classification is an important discipline in subsurface exploration, for both oil & gas and Carbon Capture and Storage (CCS). The abundance and distribution of species found in sedimentary rocks provide valuable information about the age and depositional environment. However, the analysis is difficult and time-consuming, as it is based on manual work by human experts. Attempts to automate this process face two key challenges: (1) the input data are very large - our dataset is projected to grow to 3 billion microfossils, and (2) there are not enough labeled data to use the standard procedure of training a deep learning classifier. We propose an efficient pipeline for processing and grouping fossils by genus, or even species, from microscope slides using self-supervised learning. First we show how to efficiently extract crops from whole slide images by adapting previously trained object detection algorithms. Second, we provide a comparison of a range of self-supervised learning methods to classify and identify microfossils from very few labels. We obtain excellent results with both convolutional neural networks and vision transformers fine-tuned by self-supervision. Our approach is fast and computationally light, providing a handy tool for geologists working with microfossils.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik