PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Transfer learning for well logging formation evaluation using similarity weights

Text

Transfer learning for well logging formation evaluation using similarity weights

Binsen Xu - Nama Orang; Zhou Feng - Nama Orang; Rongbo Shao - Nama Orang; Lizhi Xiao - Nama Orang; Jun Zhou - Nama Orang; Hongliang Wu - Nama Orang; Peng Liu - Nama Orang; Han Tian - Nama Orang; Weizhong Li - Nama Orang;

Machine learning has been widely applied in well logging formation evaluation studies. However, several challenges negatively impacted the generalization capabilities of machine learning models in practical implementations, such as the mismatch of data domain between training and testing datasets, imbalances among sample categories, and inadequate representation of data model. These issues have led to substantial insufficient identification for reservoir and significant deviations in subsequent evaluations. To improve the transferability of machine learning models within limited sample sets, this study proposes a weight transfer learning framework based on the similarity of the labels. The similarity weighting method includes both hard weights and soft weights. By evaluating the similarity between test and training sets of logging data, the similarity results are used to estimate the weights of training samples, thereby optimizing the model learning process. We develop a double experts' network and a bidirectional gated neural network based on hierarchical attention and multi-head attention (BiGRU-MHSA) for well logs reconstruction and lithofacies classification tasks. Oil field data results for the shale strata in the Gulong area of the Songliao Basin of China indicate that the double experts’ network model performs well in curve reconstruction tasks. However, it may not be effective in lithofacies classification tasks, while BiGRU-MHSA performs well in that area. In the study of constructing large-scale well logging processing and formation interpretation models, it is maybe more beneficial by employing different expert models for combined evaluations. In addition, although the improvement is limited, hard or soft weighting methods is better than unweighted (i.e., average-weighted) in significantly different adjacent wells. The code and data are open and available for subsequent studies on other lithofacies layers.


Ketersediaan
333551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2024
Deskripsi Fisik
16 hlm PDF, 22.2488 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.5, December 2024
Subjek
Logging data sample similarity
Weighted loss optimization
Weight transfer learning
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Transfer learning for well logging formation evaluation using similarity weights
    Machine learning has been widely applied in well logging formation evaluation studies. However, several challenges negatively impacted the generalization capabilities of machine learning models in practical implementations, such as the mismatch of data domain between training and testing datasets, imbalances among sample categories, and inadequate representation of data model. These issues have led to substantial insufficient identification for reservoir and significant deviations in subsequent evaluations. To improve the transferability of machine learning models within limited sample sets, this study proposes a weight transfer learning framework based on the similarity of the labels. The similarity weighting method includes both hard weights and soft weights. By evaluating the similarity between test and training sets of logging data, the similarity results are used to estimate the weights of training samples, thereby optimizing the model learning process. We develop a double experts' network and a bidirectional gated neural network based on hierarchical attention and multi-head attention (BiGRU-MHSA) for well logs reconstruction and lithofacies classification tasks. Oil field data results for the shale strata in the Gulong area of the Songliao Basin of China indicate that the double experts’ network model performs well in curve reconstruction tasks. However, it may not be effective in lithofacies classification tasks, while BiGRU-MHSA performs well in that area. In the study of constructing large-scale well logging processing and formation interpretation models, it is maybe more beneficial by employing different expert models for combined evaluations. In addition, although the improvement is limited, hard or soft weighting methods is better than unweighted (i.e., average-weighted) in significantly different adjacent wells. The code and data are open and available for subsequent studies on other lithofacies layers.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik