PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of A method for vertical adjustment of digital aerial photogrammetry data by using a high-quality digital terrain model'

Text

A method for vertical adjustment of digital aerial photogrammetry data by using a high-quality digital terrain model'

Daniela Ali-Sistoa - Nama Orang; Ranjith Gopalakrishnan - Nama Orang; Mikko Kukkonen - Nama Orang; Pekka Savolainen - Nama Orang; Petteri Packalena - Nama Orang;

The accuracy of vertical position information can be degraded by various sources of error in digital aerial photogrammetry (DAP) based point clouds. To address this issue, we propose a relatively straightforward method for automated correction of such point clouds. This method can be used in conjunction with any 3D reconstruction method in which a point cloud is generated from a pair of aerial images. The crux of the method involves separately co-registering each DAP point cloud (formed by the overlap of two or more images) to a common airborne laser scanning (ALS) based digital terrain model. The proposed method has the following essential steps: (1) Ground surface patches are identified in the normalized DAP point clouds by selecting areas in which standard deviation of vertical height is low, (2) height differences between the DAP and ALS point clouds are calculated at these patches, and (3) a correction surface is interpolated from these height differences and is then used to rectify the entire DAP point cloud. The performance of the proposed method is verified using plot data (n = 250) from a forested study area in Eastern Finland. We observed that DAP data from the area corrected using our proposed method resulted in significant increases in prediction accuracy of key forest variables. Specifically, the root mean squared error (RMSE) values for dominant height predictions decreased by up to 23.2%, while the associated model R2 values increased by 16.9%. As for stem volume, RMSEs dropped by 20.6%, while the model R2 improved by 14.6%, respectively. Hence, prediction accuracies were almost as good as with ALS data. The results suggest that vertically misaligned DAP data, if rectified using an algorithm such as the one presented here, could deliver near ALS data quality at a fraction of the cost.


Ketersediaan
337910.285Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
International Journal of Applied Earth Observation and Geoinformation - Open Access
No. Panggil
910.285
Penerbit
Amsterdam : Elsevier., 2020
Deskripsi Fisik
9 hlm PDF, 1.547 KB
Bahasa
Inggris
ISBN/ISSN
1569-8432
Klasifikasi
910.285
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.84, February 2020
Subjek
Airborne laser scanning
Aerial imaging
Digital terrain model
Height adjustment Image matching
Digital aerial photogrammetry
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • A method for vertical adjustment of digital aerial photogrammetry data by using a high-quality digital terrain model'
    The accuracy of vertical position information can be degraded by various sources of error in digital aerial photogrammetry (DAP) based point clouds. To address this issue, we propose a relatively straightforward method for automated correction of such point clouds. This method can be used in conjunction with any 3D reconstruction method in which a point cloud is generated from a pair of aerial images. The crux of the method involves separately co-registering each DAP point cloud (formed by the overlap of two or more images) to a common airborne laser scanning (ALS) based digital terrain model. The proposed method has the following essential steps: (1) Ground surface patches are identified in the normalized DAP point clouds by selecting areas in which standard deviation of vertical height is low, (2) height differences between the DAP and ALS point clouds are calculated at these patches, and (3) a correction surface is interpolated from these height differences and is then used to rectify the entire DAP point cloud. The performance of the proposed method is verified using plot data (n = 250) from a forested study area in Eastern Finland. We observed that DAP data from the area corrected using our proposed method resulted in significant increases in prediction accuracy of key forest variables. Specifically, the root mean squared error (RMSE) values for dominant height predictions decreased by up to 23.2%, while the associated model R2 values increased by 16.9%. As for stem volume, RMSEs dropped by 20.6%, while the model R2 improved by 14.6%, respectively. Hence, prediction accuracies were almost as good as with ALS data. The results suggest that vertically misaligned DAP data, if rectified using an algorithm such as the one presented here, could deliver near ALS data quality at a fraction of the cost.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik