PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces

Text

Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces

C. Marais Sicre - Nama Orang; R. Fieuzal - Nama Orang; F. Baup - Nama Orang;

The monitoring of different crops (cultivated plots) and types of surface (bare soils, etc.) is a crucial economic and environmental issue for the management of resources and human activity. In this context, the objective of this study is to evaluate the contribution of multispectral satellite imagery (optical and radar) to land use and land cover classification.
Object-oriented supervised classifications, based on a Random Forest algorithm, and majority zoning post-processing are used. This study emerges from the experiment on multi-sensor crop monitoring (MCM'10, Baup et al., 2012) conducted in 2010 on a mixed farming area in the southwest of France, near Toulouse. This experiment enabled the regular and quasi-synchronous collection of multi-sensor satellite data and in situ observations, which are used in this study. 211 plots with contrasting characteristics (different slopes, soil types, aspects, farming practices, shapes and surface areas) were monitored to represent the variability of the study area. They can be grouped into four classes of land cover: 39 grassland areas, 100 plots of wheat, 13 plots of barley, 20 plots of rapeseed, and 2 classes of bare soil: 23 plots of small roughness and 16 plots of medium roughness. Satellite radar images in the X-, C- and L-bands (HH polarization) were acquired between 14 and 18 April 2010. Optical images delivered by Formosat-2 and corresponding field data were acquired on 14 April 2010.
The results show that combining images acquired in the L-band (Alos) and the optical range (Formosat-2) improves the classification performance (overall accuracy = 0.85, kappa = 0.81) compared to the use of radar or optical data alone. The results obtained for the various types of land cover show performance levels and confusions related to the phenological stage of the species studied, with the geometry of the cover, the roughness states of the surfaces, etc. Performance is also related to the wavelength and penetration depth of the signal providing the images. Thus, the results show that the quality of the classification often increases with increasing wavelength of the images used.


Ketersediaan
340910.285Perpustakaan BIGTersedia
Informasi Detail
Judul Seri
International Journal of Applied Earth Observation and Geoinformation - Open Access
No. Panggil
910.285
Penerbit
Amsterdam : Elsevier., 2020
Deskripsi Fisik
13 hlm PDF, 5.659 KB
Bahasa
Inggris
ISBN/ISSN
1569-8432
Klasifikasi
910.285
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.84, February 2020
Subjek
Random forest
Multi-frequency
Agriculture
Classification
Land use and land cover
Optical
Radar
Formosat-2
TerraSar-X
Radarsat-2
Alos PALSAR
Crops
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces
    The monitoring of different crops (cultivated plots) and types of surface (bare soils, etc.) is a crucial economic and environmental issue for the management of resources and human activity. In this context, the objective of this study is to evaluate the contribution of multispectral satellite imagery (optical and radar) to land use and land cover classification. Object-oriented supervised classifications, based on a Random Forest algorithm, and majority zoning post-processing are used. This study emerges from the experiment on multi-sensor crop monitoring (MCM'10, Baup et al., 2012) conducted in 2010 on a mixed farming area in the southwest of France, near Toulouse. This experiment enabled the regular and quasi-synchronous collection of multi-sensor satellite data and in situ observations, which are used in this study. 211 plots with contrasting characteristics (different slopes, soil types, aspects, farming practices, shapes and surface areas) were monitored to represent the variability of the study area. They can be grouped into four classes of land cover: 39 grassland areas, 100 plots of wheat, 13 plots of barley, 20 plots of rapeseed, and 2 classes of bare soil: 23 plots of small roughness and 16 plots of medium roughness. Satellite radar images in the X-, C- and L-bands (HH polarization) were acquired between 14 and 18 April 2010. Optical images delivered by Formosat-2 and corresponding field data were acquired on 14 April 2010. The results show that combining images acquired in the L-band (Alos) and the optical range (Formosat-2) improves the classification performance (overall accuracy = 0.85, kappa = 0.81) compared to the use of radar or optical data alone. The results obtained for the various types of land cover show performance levels and confusions related to the phenological stage of the species studied, with the geometry of the cover, the roughness states of the surfaces, etc. Performance is also related to the wavelength and penetration depth of the signal providing the images. Thus, the results show that the quality of the classification often increases with increasing wavelength of the images used.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik