ISPRS Journal of Photogrammetry and Remote Sensing Vol.158 December 2019

No image available for this title
1.Application of convolutional neural networks for low vegetation filtering from data acquired by UAVs p.1-10
2.Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture p.11-22
3.Improving the estimation of fractional vegetation cover from UAV RGB imagery by colour unmixing p.23-34
4.Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction p.35-49
5.An implicit radar convolutional burn index for burnt area mapping with Sentinel-1 C-band SAR data p.50-62
6.Multi-modal deep learning for landform recognition p.63.75
7.Comparison of terrestrial LiDAR and digital hemispherical photography for estimating leaf angle distribution in European broadleaf beech forests p.76-89
8.Quantifying PM2.5 mass concentration and particle radius using satellite data and an optical-mass conversion algorithm p.90-98
9.A comprehensive evaluation of disturbance agent classification approaches: Strengths of ensemble classification, multiple indices, spatio-temporal variables, and direct prediction p.99-112
10.On the value of corner reflectors and surface models in InSAR precise point positioning p.113-122
11.NRLI-UAV: Non-rigid registration of sequential raw laser scans and images for low-cost UAV LiDAR point cloud quality improvement p.123-145
12.Plenoptic camera calibration based on microlens distortion modelling p.146-154
13.Spatial information inference net: Road extraction using road-specific contextual information p.155-166
14.Metaheuristic pansharpening based on symbiotic organisms search optimization p.167-187
15.Estimation and analysis of along-track attitude jitter of ZiYuan-3 satellite based on relative residuals of tri-band multispectral imagery p.188-200
16.Using spectral Geodesic and spatial Euclidean weights of neighbourhood pixels for hyperspectral Endmember Extraction preprocessing p.201-218
17.Deep learning for conifer/deciduous classification of airborne LiDAR 3D point clouds representing individual trees p.219-230
18.Statistical retrieval of atmospheric profiles with deep convolutional neural networks p.231-240
19.Matching of TerraSAR-X derived ground control points to optical image patches using deep learning p.241-248
20.A time-series classification approach based on change detection for rapid land cover mapping☆ p.249-262
21.Predicting forest fires burned area and rate of spread from pre-fire multispectral satellite measurements p.263-278
22.Deep learning classifiers for hyperspectral imaging: A review p.279-317
M.4153-XII-2019526.982Perpustakaan BIG (500)Tersedia
Informasi Detil
Judul Seri


No. Panggil



Elsevier : Amsterdam.,

Deskripsi Fisik

317 hlm.; ilus 28cm.







Informasi Detil
Tipe Isi


Tipe Media


Tipe Pembawa




Info Detil Spesifik


Pernyataan Tanggungjawab
Tidak tersedia versi lain
Lampiran Berkas

Share :