In this study, we present an artificial neural network (ANN)-based approach for travel-time tomography of a volcanic edifice under sparse-ray coverage. We employ ray tracing to simulate the propagation of seismic waves through the heterogeneous medium of a volcanic edifice, and an inverse modeling algorithm that uses an ANN to estimate the velocity structure from the “observed” travel-time …
Water prediction plays a crucial role in modern-day water resource management, encompassing both hydrological patterns and demand forecasts. To gain insights into its current focus, status, and emerging themes, this study analyzed 876 articles published between 2015 and 2022, retrieved from the Web of Science database. Leveraging CiteSpace visualization software, bibliometric techniques, and li…
Microfossil classification is an important discipline in subsurface exploration, for both oil & gas and Carbon Capture and Storage (CCS). The abundance and distribution of species found in sedimentary rocks provide valuable information about the age and depositional environment. However, the analysis is difficult and time-consuming, as it is based on manual work by human experts. Attempts to au…
Pore size analysis plays a pivotal role in unraveling reservoir behavior and its intricate relationship with confined fluids. Traditional methods for predicting pore size distribution (PSD), relying on drilling cores or thin sections, face limitations associated with depth specificity. In this study, we introduce an innovative framework that leverages nuclear magnetic resonance (NMR) log data, …
The large spatial/temporal/frequency scale of geoscience and remote-sensing datasets causes memory issues when using convolutional neural networks for (sub-) surface data segmentation. Recently developed fully reversible or fully invertible networks can mostly avoid memory limitations by recomputing the states during the backward pass through the network. This results in a low and fixed memory …
Noise suppression is an important part of microseismic monitoring technology. Signal and noise can be separated by denoising and filtering to improve the subsequent analysis. In this paper, we propose a new denoising method based on convolutional blind denoising network (CBDNet). The method is partially modified for image denoising network CBDNet to make it suitable for one–dimensional data d…
Frosts are one of the atmospheric phenomena with one of the larger negative effects on the agricultural sector in the southern region of Brazil, therefore, an earlier forecast can minimize their impacts. In the present work, artificial neural networks (ANNs) techniques were applied in order to improve the predicting capabilities of frost events in southern Brazil. In the study, two multilayer p…
In recent years, convolutional neural networks (CNNs) have demonstrated their effectiveness in predicting bulk parameters, such as effective diffusion, directly from pore-space geometries. CNNs offer significant computational advantages over traditional methods, making them particularly appealing. However, the current literature primarily focuses on fully saturated porous media, while the parti…
Deep-learning (DL) algorithms are increasingly used for routine seismic data processing tasks, including seismic event detection and phase arrival picking. Despite many examples of the remarkable performance of existing (i.e., pre-trained) deep-learning detector/picker models, there are still some cases where the direct applications of such models do not generalize well. In such cases, substant…
In this study, a deep learning algorithm was applied to two-dimensional magnetotelluric (MT) data inversion. Compared with the traditional linear iterative inversion methods, the MT inversion method based on convolutional neural networks (CNN) does not rely on the selection of the initial model parameters and does not fall into the local optima. Although the CNN inversion models can provide a c…