PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Ditapis dengan

  • Tahun Penerbitan
    To
    1 0042 1041 0042 1041 004 — 2 1041 0041 2791 5541 8292 104
  • Ketersediaan
  • Lampiran
  • Tipe Koleksi
    Lihat Lebih Banyak
  • Format Fisik Dokumen
    Lihat Lebih Banyak
  • Lokasi
  • Bahasa
Ditemukan 57 dari pencarian Anda melalui kata kunci: subject="Deep learning"
1 2 3 4 5 Berikutnya Hal. Akhir
cover
When linear inversion fails: Neural-network optimization for sparse-ray trave…
Komentar Bagikan
Johannes FaberGeorg RümpkerNishtha SrivastavaAbolfazl KomeaziFabian Limberger

In this study, we present an artificial neural network (ANN)-based approach for travel-time tomography of a volcanic edifice under sparse-ray coverage. We employ ray tracing to simulate the propagation of seismic waves through the heterogeneous medium of a volcanic edifice, and an inverse modeling algorithm that uses an ANN to estimate the velocity structure from the “observed” travel-time …

Edisi
Vol.5, December 2024
ISBN/ISSN
2666-5441
Deskripsi Fisik
12 hlm PDF, 11.246 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Water resource forecasting with machine learning and deep learning: A sciento…
Komentar Bagikan
Chanjuan LiuJing XuXi’an LiZhongyao YuJinran Wud

Water prediction plays a crucial role in modern-day water resource management, encompassing both hydrological patterns and demand forecasts. To gain insights into its current focus, status, and emerging themes, this study analyzed 876 articles published between 2015 and 2022, retrieved from the Web of Science database. Leveraging CiteSpace visualization software, bibliometric techniques, and li…

Edisi
Vol.5, December 2024
ISBN/ISSN
2666-5441
Deskripsi Fisik
12 hlm PDF, 4.935 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
The 3-billion fossil question: How to automate classification of microfossils
Komentar Bagikan
Iver MartinsenDavid WadeBenjamin RicaudFred Godtliebsen

Microfossil classification is an important discipline in subsurface exploration, for both oil & gas and Carbon Capture and Storage (CCS). The abundance and distribution of species found in sedimentary rocks provide valuable information about the age and depositional environment. However, the analysis is difficult and time-consuming, as it is based on manual work by human experts. Attempts to au…

Edisi
Vol.5, December 2024
ISBN/ISSN
2666-5441
Deskripsi Fisik
9 hlm PDF, 3.014 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Pore size classification and prediction based on distribution of reservoir fl…
Komentar Bagikan
Hassan BagheriReza MohebianAli MoradzadehBehnia Azizzadeh ehmandost Olya

Pore size analysis plays a pivotal role in unraveling reservoir behavior and its intricate relationship with confined fluids. Traditional methods for predicting pore size distribution (PSD), relying on drilling cores or thin sections, face limitations associated with depth specificity. In this study, we introduce an innovative framework that leverages nuclear magnetic resonance (NMR) log data, …

Edisi
Vol.5, December 2024
ISBN/ISSN
2666-5441
Deskripsi Fisik
23 hlm PDF, 24.240 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Fully invertible hyperbolic neural networks for segmenting large-scale surfac…
Komentar Bagikan
Eldad HaberBas PetersKeegan Lensink

The large spatial/temporal/frequency scale of geoscience and remote-sensing datasets causes memory issues when using convolutional neural networks for (sub-) surface data segmentation. Recently developed fully reversible or fully invertible networks can mostly avoid memory limitations by recomputing the states during the backward pass through the network. This results in a low and fixed memory …

Edisi
Vol.5, December 2024
ISBN/ISSN
2666-5441
Deskripsi Fisik
13 hlm PDF, 3.537 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Research on microseismic denoising method based on CBDNet
Komentar Bagikan
Jianchao LinJing ZhengDewei LiZhixiang Wu

Noise suppression is an important part of microseismic monitoring technology. Signal and noise can be separated by denoising and filtering to improve the subsequent analysis. In this paper, we propose a new denoising method based on convolutional blind denoising network (CBDNet). The method is partially modified for image denoising network CBDNet to make it suitable for one–dimensional data d…

Edisi
Vol.4, December 2023
ISBN/ISSN
2666-5441
Deskripsi Fisik
11 hlm PDF, 4.803 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Improved frost forecast using machine learning methods
Komentar Bagikan
Jose Roberto RozanteEnver RamirezDiego RamirezGabriela Rozante

Frosts are one of the atmospheric phenomena with one of the larger negative effects on the agricultural sector in the southern region of Brazil, therefore, an earlier forecast can minimize their impacts. In the present work, artificial neural networks (ANNs) techniques were applied in order to improve the predicting capabilities of frost events in southern Brazil. In the study, two multilayer p…

Edisi
Vol.4, December 2023
ISBN/ISSN
2666-5441
Deskripsi Fisik
18 hlm PDF, 19.643 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Estimating relative diffusion from 3D micro-CT images using CNNs
Komentar Bagikan
Stephan GärttnerFlorian FrankFabian WollerAndreas MeierNadja Ray

In recent years, convolutional neural networks (CNNs) have demonstrated their effectiveness in predicting bulk parameters, such as effective diffusion, directly from pore-space geometries. CNNs offer significant computational advantages over traditional methods, making them particularly appealing. However, the current literature primarily focuses on fully saturated porous media, while the parti…

Edisi
Vol.4, December 2023
ISBN/ISSN
2666-5441
Deskripsi Fisik
10 hlm PDF, 2.839 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Blockly earthquake transformer: A deep learning platform for custom phase pic…
Komentar Bagikan
Hao MaiPascal AudetH.K. Claire PerryS. Mostafa MousaviQuan Zhang

Deep-learning (DL) algorithms are increasingly used for routine seismic data processing tasks, including seismic event detection and phase arrival picking. Despite many examples of the remarkable performance of existing (i.e., pre-trained) deep-learning detector/picker models, there are still some cases where the direct applications of such models do not generalize well. In such cases, substant…

Edisi
Vol.4, December 2023
ISBN/ISSN
2666-5441
Deskripsi Fisik
11 hlm PDF, 3.595 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
2D magnetotelluric inversion based on ResNet
Komentar Bagikan
LiAn XieBo HanXiangyun HuNingbo Bai

In this study, a deep learning algorithm was applied to two-dimensional magnetotelluric (MT) data inversion. Compared with the traditional linear iterative inversion methods, the MT inversion method based on convolutional neural networks (CNN) does not rely on the selection of the initial model parameters and does not fall into the local optima. Although the CNN inversion models can provide a c…

Edisi
Vol.4, December 2023
ISBN/ISSN
2666-5441
Deskripsi Fisik
9 hlm PDF, 4.620 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
1 2 3 4 5 Berikutnya Hal. Akhir
PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial adalah perpustakaan yang dikelola oleh Badan Informasi Geospasial. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial dan literatur terkait lainnya.

Statistik Pengunjung Web

Hari Ini : 1 Pekan Terakhir : 1 Bulan Terakhir : Total Kunjungan :

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik