Evolution in geoscientific data provides the mineral industry with new opportunities. A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity. This direction is more significant where traditional geochemical data are not ideal, which is the case for evaluating unconventional resources, such as tailing…
Most known mineral deposits were discovered by accident using expensive, time-consuming, and knowledge-based methods such as stream sediment geochemical data, diamond drilling, reconnaissance geochemical and geophysical surveys, and/or remote sensing. Recent years have seen a decrease in the number of newly discovered mineral deposits and a rise in demand for critical raw materials, prompting e…
In exploration geochemistry, advances in the detection limit, breadth of elements analyze-able, accuracy and precision of analytical instruments have motivated the re-analysis of legacy samples to improve confidence in geochemical data and gain more insights into potentially mineralized areas. While a re-analysis campaign in a geochemical exploration program modernizes legacy geochemical data b…
Most of the existing machine learning studies in logs interpretation do not consider the data distribution discrepancy issue, so the trained model cannot well generalize to the unseen data without calibrating the logs. In this paper, we formulated the geophysical logs calibration problem and give its statistical explanation, and then exhibited an interpretable machine learning method, i.e., Uni…
Noise suppression is an essential step in many seismic processing workflows. A portion of this noise, particularly in land datasets, presents itself as random noise. In recent years, neural networks have been successfully used to denoise seismic data in a supervised fashion. However, supervised learning always comes with the often unachievable requirement of having noisy-clean data pairs for tr…
The purpose of this work is to assess the soil fertility for Tulaipanji rice cultivation in Kaliyaganj C.D. Block using the Analytic Hierarchy Process (AHP) and Machine learning algorithms along with the field survey data and GIS. A total of 40 soil samples from Tulaipanji rice fields (from 0 to 40 cm depth) have been randomly collected for the analysis of the soil health condition. For the …
In this study, we present a machine learning-based method to predict trace element concentrations from major and minor element concentration data using a legacy lithogeochemical database of magmatic rocks from the Karoo large igneous province (Gondwana Supercontinent). Wedemonstrate that a variety of trace elements, including most of the lanthanides, chalcophile, lithophile, and siderophile ele…
The idea of using a deep autoencoder to encode seismic waveform features and then use them in different seismological applications is appealing. In this paper, we designed tests to evaluate this idea of using autoencoders as feature extractors for different seismological applications, such as event discrimination (i.e., earthquake vs. noise waveforms, earthquake vs. explosion waveforms), and ph…
Machine learning is becoming increasingly important in scientific and technological progress, due to its ability to create models that describe complex data and generalize well. The wealth of publicly-available seismic data nowadays requires automated, fast, and reliable tools to carry out a multitude of tasks, such as the detection of small, local earthquakes in areas characterized by sparsity…
Understanding the relationship between fault friction and physical parameters is crucial for comprehending earthquake physics. Despite various friction models developed to explain this relationship, representing the relationships in a friction model with greater detail remains a challenge due to intricate correlations, including the nonlinear interplay between physical parameters and friction. …