PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Ditapis dengan

  • Tahun Penerbitan
    To
    1 0042 1081 0042 1081 004 — 2 1081 0041 2801 5561 8322 108
  • Ketersediaan
  • Lampiran
  • Tipe Koleksi
    Lihat Lebih Banyak
  • Format Fisik Dokumen
    Lihat Lebih Banyak
  • Lokasi
  • Bahasa
Ditemukan 63 dari pencarian Anda melalui kata kunci: subject="Machine Learning"
Hal. Awal Sebelumnya 1 2 3 4 5 Berikutnya Hal. Akhir
cover
Big geochemical data through remote sensing for dynamic mineral resource moni…
Komentar Bagikan
Steven E. ZhangGlen T. NwailaJulie E. BourdeauYousef GhorbaniEmmanuel John M. CarranzaShenelle Agard

Evolution in geoscientific data provides the mineral industry with new opportunities. A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity. This direction is more significant where traditional geochemical data are not ideal, which is the case for evaluating unconventional resources, such as tailing…

Edisi
Vol.4, December 2023
ISBN/ISSN
2666-5441
Deskripsi Fisik
13 hlm PDF, 13.437 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Artificial intelligence-based anomaly detection of the Assen iron deposit in …
Komentar Bagikan
Steven E. ZhangGlen T. NwailaJulie E. BourdeauYousef GhorbaniEmmanuel John M. Carranza

Most known mineral deposits were discovered by accident using expensive, time-consuming, and knowledge-based methods such as stream sediment geochemical data, diamond drilling, reconnaissance geochemical and geophysical surveys, and/or remote sensing. Recent years have seen a decrease in the number of newly discovered mineral deposits and a rise in demand for critical raw materials, prompting e…

Edisi
Vol.3, December 2022
ISBN/ISSN
2666-5441
Deskripsi Fisik
15 hlm PDF, 14.623 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Advanced geochemical exploration knowledge using machine learning: Prediction…
Komentar Bagikan
Steven E. ZhangGlen T. NwailaJulie E. BourdeauYousef Ghorbani

In exploration geochemistry, advances in the detection limit, breadth of elements analyze-able, accuracy and precision of analytical instruments have motivated the re-analysis of legacy samples to improve confidence in geochemical data and gain more insights into potentially mineralized areas. While a re-analysis campaign in a geochemical exploration program modernizes legacy geochemical data b…

Edisi
Vol.3, December 2022
ISBN/ISSN
2666-5441
Deskripsi Fisik
15 hlm PDF, 28.166 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Unilateral Alignment: An interpretable machine learning method for geophysica…
Komentar Bagikan
Wenting ZhangJichen WangKun LiHaining LiuYu KangYuping WudWenjun Lv

Most of the existing machine learning studies in logs interpretation do not consider the data distribution discrepancy issue, so the trained model cannot well generalize to the unseen data without calibrating the logs. In this paper, we formulated the geophysical logs calibration problem and give its statistical explanation, and then exhibited an interpretable machine learning method, i.e., Uni…

Edisi
Vol.2, December 2021
ISBN/ISSN
2666-5441
Deskripsi Fisik
10 hlm PDF, 3.656 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
The potential of self-supervised networks for random noise suppression in sei…
Komentar Bagikan
Claire BirnieMatteo RavasiSixiu LiuTariq Alkhalifah

Noise suppression is an essential step in many seismic processing workflows. A portion of this noise, particularly in land datasets, presents itself as random noise. In recent years, neural networks have been successfully used to denoise seismic data in a supervised fashion. However, supervised learning always comes with the often unachievable requirement of having noisy-clean data pairs for tr…

Edisi
Vol.2, December 2021
ISBN/ISSN
2666-5441
Deskripsi Fisik
13 hlm PDF, 7.813 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Site suitability for Aromatic Rice cultivation by integrating Geo-spatial and…
Komentar Bagikan
Debabrata SarkarSunil SahaManab MaitraProlay Mondal

The purpose of this work is to assess the soil fertility for Tulaipanji rice cultivation in Kaliyaganj C.D. Block using the Analytic Hierarchy Process (AHP) and Machine learning algorithms along with the field survey data and GIS. A total of 40 soil samples from Tulaipanji rice fields (from 0 to 40 ​cm depth) have been randomly collected for the analysis of the soil health condition. For the …

Edisi
Vol.2, December 2021
ISBN/ISSN
2666-5441
Deskripsi Fisik
13 hlm PDF, 6.223 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Machine learning-based prediction of trace element concentrations using data …
Komentar Bagikan
Steven E. ZhangGlen T. NwailaJulie E. BourdeauLewis D. Ashwal

In this study, we present a machine learning-based method to predict trace element concentrations from major and minor element concentration data using a legacy lithogeochemical database of magmatic rocks from the Karoo large igneous province (Gondwana Supercontinent). Wedemonstrate that a variety of trace elements, including most of the lanthanides, chalcophile, lithophile, and siderophile ele…

Edisi
Vol.2, December 2021
ISBN/ISSN
2666-5441
Deskripsi Fisik
16 hlm PDF, 3.494 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Deep convolutional autoencoders as generic feature extractors in seismologica…
Komentar Bagikan
Qingkai KongAndrea ChiangAna C. AguiarM. Giselle Fern andez-GodinoStephen C. MyersDonald D. Lucas

The idea of using a deep autoencoder to encode seismic waveform features and then use them in different seismological applications is appealing. In this paper, we designed tests to evaluate this idea of using autoencoders as feature extractors for different seismological applications, such as event discrimination (i.e., earthquake vs. noise waveforms, earthquake vs. explosion waveforms), and ph…

Edisi
Vol.2, December 2021
ISBN/ISSN
2666-5441
Deskripsi Fisik
11 hlm PDF, 1.991 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Local earthquakes detection: A benchmark dataset of 3-component seismograms b…
Komentar Bagikan
Fabrizio MagriniDario JozinoviFabio CammaranoAlberto MicheliniLapo Boschi

Machine learning is becoming increasingly important in scientific and technological progress, due to its ability to create models that describe complex data and generalize well. The wealth of publicly-available seismic data nowadays requires automated, fast, and reliable tools to carry out a multitude of tasks, such as the detection of small, local earthquakes in areas characterized by sparsity…

Edisi
Vol.1, December 2020
ISBN/ISSN
2666-5441
Deskripsi Fisik
10 hlm PDF, 3.299 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Relationships between fault friction, slip time, and physical parameters expl…
Komentar Bagikan
Tae-Hoon UhmbYohei HamadaTakehiro Hirose

Understanding the relationship between fault friction and physical parameters is crucial for comprehending earthquake physics. Despite various friction models developed to explain this relationship, representing the relationships in a friction model with greater detail remains a challenge due to intricate correlations, including the nonlinear interplay between physical parameters and friction. …

Edisi
Vol.25, February 2025
ISBN/ISSN
2590-1974
Deskripsi Fisik
14 hlm PDF, 9.549 KB
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
Hal. Awal Sebelumnya 1 2 3 4 5 Berikutnya Hal. Akhir
PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial adalah perpustakaan yang dikelola oleh Badan Informasi Geospasial. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial dan literatur terkait lainnya.

Statistik Pengunjung Web

Hari Ini : 1519 1 Pekan Terakhir : 49186 1 Bulan Terakhir : 111414 Total Kunjungan : 445477

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik