Rapid detection of landslides after an exceptional event is critical for planning effective disaster management. Previous works have typically used machine learning-based methods, including the recently popular deep-learning approaches, to identify characteristics surface features from satellite remote sensing data, especially from optical images. However, data acquisition from optical images i…
Indonesia, one of the most earthquake-prone countries in the world, is currently developing an Earthquake Early Warning (EEW) system. A key component of this system, the Regional EEW, relies on Ground Motion Prediction models (GMPMs) to issue end-user alerts. However, in West Java, one of the pilot regions for this project, there is a lack of region-specific GMPMs essential for accurate early w…
Landslides, a global phenomenon, significantly impact economies and societies, especially in densely populated areas. Effective mitigation requires awareness of landslide risks, yet temporal links between occurrences are often neglected, challenging model performance due to non-stationary triggering and predisposing factors. This study presents a novel landslide susceptibility model that incorp…
The digital reconstruction of reservoir rock or porous media is important as it enables us to visualize and explore their real internal structures. The reservoir rocks (such as sandstone and carbonate) contain both spatial and temporal characteristics, which pose a big challenge in their characterization through routine core analysis or x-ray microcomputer tomography. While x-ray micro-computed…
Our study pioneers an innovative use of unsupervised machine learning, a powerful tool for navigating unclassified data, to unravel the complexities of subsurface seismic activities and extract meaningful patterns. Our central objective is to comprehensively characterize seismicity within an active region by identifying distinct seismic clusters in spatial distribution, thereby gaining a deeper…
Landform maps are important tools in assessment of soil- and eco-hydrogeomorphic processes and hazards, hydrological modeling, and natural resources and land management. Traditional techniques of mapping landforms based on field surveys or from aerial photographs can be time and labor intensive, highlighting the importance of remote sensing products based automatic or semi-automatic approaches.…
The flood hazards in the southwest coastal region of India in 2018 and 2020 resulted in numerous casualties and the displacement of over a million people from their homes. In order to mitigate the loss of life and resources caused by recurrent major and minor flood events, it is imperative to develop a comprehensive spatial flood zonation map of the entire area. Therefore, the main aim of the p…
The application of machine learning (ML) techniques to climate science has received significant attention, particularly in the field of climate predictions, ranging from sub-seasonal to decadal time scales. This paper reviews recent progress of ML techniques employed in climate phenomena prediction and the enhancement of dynamic forecast models, which provide valuable insights into the great po…
Land subsidence is a worldwide threat that may cause irreversible damage to the environment and the infrastructures. Thus, identifying and mapping areas prone to land subsidence with accurate methods such as Land Subsidence Susceptibility Index (LSSI) mapping is crucial for mitigating the adverse impacts of this geohazard. Also, Machine Learning (ML) is now becoming a powerful tool to analyze v…
Current rock engineering design in drill and blast tunnelling primarily relies on engineers' observational assessments. Measure While Drilling (MWD) data, a high-resolution sensor dataset collected during tunnel excavation, is underutilised, mainly serving for geological visualisation. This study aims to automate the translation of MWD data into actionable metrics for rock engineering. It seeks…