PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Ditapis dengan

  • Tahun Penerbitan
    To
    1 0042 1081 0042 1081 004 — 2 1081 0041 2801 5561 8322 108
  • Ketersediaan
  • Lampiran
  • Tipe Koleksi
    Lihat Lebih Banyak
  • Format Fisik Dokumen
    Lihat Lebih Banyak
  • Lokasi
  • Bahasa
Ditemukan 63 dari pencarian Anda melalui kata kunci: subject="Machine Learning"
Hal. Awal Sebelumnya 1 2 3 4 5 Berikutnya Hal. Akhir
cover
Rapid mapping of landslides using satellite SAR imagery: A progressive learni…
Komentar Bagikan
Nikhil PrakashAndrea ManconiAlessandro Cesare Mondini

Rapid detection of landslides after an exceptional event is critical for planning effective disaster management. Previous works have typically used machine learning-based methods, including the recently popular deep-learning approaches, to identify characteristics surface features from satellite remote sensing data, especially from optical images. However, data acquisition from optical images i…

Edisi
Vol.25, February 2025
ISBN/ISSN
2590-1974
Deskripsi Fisik
12 hlm PDF, 5.502 KB
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Developing ground motion prediction models for West Java: A machine learning …
Komentar Bagikan
Andy RachmadanArdiansyah KoeshidayatullahSanLinn I. Kaka

Indonesia, one of the most earthquake-prone countries in the world, is currently developing an Earthquake Early Warning (EEW) system. A key component of this system, the Regional EEW, relies on Ground Motion Prediction models (GMPMs) to issue end-user alerts. However, in West Java, one of the pilot regions for this project, there is a lack of region-specific GMPMs essential for accurate early w…

Edisi
Vol.25, February 2025
ISBN/ISSN
2590-1974
Deskripsi Fisik
14 hlm PDF, 10,819 KB
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Advanced AI techniques for landslide susceptibility mapping and spatial predi…
Komentar Bagikan
I.N. Gómez-MirandaC. Restrepo-EstradaA. Builes-JaramilloJoão Porto de Albuquerque

Landslides, a global phenomenon, significantly impact economies and societies, especially in densely populated areas. Effective mitigation requires awareness of landslide risks, yet temporal links between occurrences are often neglected, challenging model performance due to non-stationary triggering and predisposing factors. This study presents a novel landslide susceptibility model that incorp…

Edisi
Vol.25, February 2025
ISBN/ISSN
2590-1974
Deskripsi Fisik
11 hlm PDF, 3.550 KB
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Reconstruction of reservoir rock using attention-based convolutional recurren…
Komentar Bagikan
Indrajeet KumarAnugrah Singh

The digital reconstruction of reservoir rock or porous media is important as it enables us to visualize and explore their real internal structures. The reservoir rocks (such as sandstone and carbonate) contain both spatial and temporal characteristics, which pose a big challenge in their characterization through routine core analysis or x-ray microcomputer tomography. While x-ray micro-computed…

Edisi
Vol.24, December 2024
ISBN/ISSN
2590-1974
Deskripsi Fisik
18 hlm PDF, 14.609 KB
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Novel application of unsupervised machine learning for characterization of su…
Komentar Bagikan
Mohammad SalamMuhammad Tahir IqbalRaja Adnan HabibAmna TahirAamir SultanTalat Iqbal

Our study pioneers an innovative use of unsupervised machine learning, a powerful tool for navigating unclassified data, to unravel the complexities of subsurface seismic activities and extract meaningful patterns. Our central objective is to comprehensively characterize seismicity within an active region by identifying distinct seismic clusters in spatial distribution, thereby gaining a deeper…

Edisi
Vol.24, December 2024
ISBN/ISSN
2590-1974
Deskripsi Fisik
9 hlm PDF, 3.121 KB
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Mapping landforms of a hilly landscape using machine learning and high-resolu…
Komentar Bagikan
Netra R. RegmiNina D.S. WebbJacob I. WalterJoonghyeok HeoNicholas W. Hayman

Landform maps are important tools in assessment of soil- and eco-hydrogeomorphic processes and hazards, hydrological modeling, and natural resources and land management. Traditional techniques of mapping landforms based on field surveys or from aerial photographs can be time and labor intensive, highlighting the importance of remote sensing products based automatic or semi-automatic approaches.…

Edisi
Vol.24, December 2024
ISBN/ISSN
2590-1974
Deskripsi Fisik
11 hlm PDF, 13.809 KB
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Integration of multi-temporal SAR data and robust machine learning models for…
Komentar Bagikan
Pankaj PrasadSourav MandalSahil Sandeep NaikVictor Joseph LovesonSimanku BorahPriyankar ChandraKarthik Sudheer

The flood hazards in the southwest coastal region of India in 2018 and 2020 resulted in numerous casualties and the displacement of over a million people from their homes. In order to mitigate the loss of life and resources caused by recurrent major and minor flood events, it is imperative to develop a comprehensive spatial flood zonation map of the entire area. Therefore, the main aim of the p…

Edisi
Vol.24, December 2024
ISBN/ISSN
2590-1974
Deskripsi Fisik
13 hlm PDF, 8.291 KB
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Current progress in subseasonal-to-decadal prediction based on machine learning
Komentar Bagikan
Zixiong ShenQiming SunXinyu LuFenghua LingYue LiJiye WuJing-Jia LuoChaoxia Yuan

The application of machine learning (ML) techniques to climate science has received significant attention, particularly in the field of climate predictions, ranging from sub-seasonal to decadal time scales. This paper reviews recent progress of ML techniques employed in climate phenomena prediction and the enhancement of dynamic forecast models, which provide valuable insights into the great po…

Edisi
Vol.24, December 2024
ISBN/ISSN
2590-1974
Deskripsi Fisik
12 hlm PDF, 5.666 KB
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
A machine learning approach for mapping susceptibility to land subsidence cau…
Komentar Bagikan
Diana OrlandiEsteban DíazRoberto TomasFederico A. GalatoloMario G.C.A. CiminoCarolina PagliNicola Perilli

Land subsidence is a worldwide threat that may cause irreversible damage to the environment and the infrastructures. Thus, identifying and mapping areas prone to land subsidence with accurate methods such as Land Subsidence Susceptibility Index (LSSI) mapping is crucial for mitigating the adverse impacts of this geohazard. Also, Machine Learning (ML) is now becoming a powerful tool to analyze v…

Edisi
Vol.24, December 2024
ISBN/ISSN
2590-1974
Deskripsi Fisik
14 hlm PDF, 15.318 KB
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
A comparative study on machine learning approaches for rock mass classificati…
Komentar Bagikan
Georg H. ErharterTom F. HansenZhongqiang LiuJim Torresen

Current rock engineering design in drill and blast tunnelling primarily relies on engineers' observational assessments. Measure While Drilling (MWD) data, a high-resolution sensor dataset collected during tunnel excavation, is underutilised, mainly serving for geological visualisation. This study aims to automate the translation of MWD data into actionable metrics for rock engineering. It seeks…

Edisi
Vol.24, December 2024
ISBN/ISSN
2590-1974
Deskripsi Fisik
24 hlm PDF, 15.152 KB
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
Hal. Awal Sebelumnya 1 2 3 4 5 Berikutnya Hal. Akhir
PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Statistik Pengunjung Web

Hari Ini : 1 Pekan Terakhir : 1 Bulan Terakhir : Total Kunjungan :

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik