We propose a novel machine learning approach to improve the formation evaluation from logs by integrating petrophysical information with neural networks using a loss function. The petrophysical information can either be specific logging response equations or abstract relationships between logging data and reservoir parameters. We compare our method's performances using two datasets and evaluate…
Logs are valuable information for oil and gas fields as they help to determine the lithology of the formations surrounding the borehole and the location and reserves of subsurface oil and gas reservoirs. However, important logs are often missing in horizontal or old wells, which poses a challenge in field applications. To address this issue, conventional methods involve supplementing the missin…
The utilization of urban underground space in a smart city requires an accurate understanding of the underground structure. As an effective technique, Rayleigh wave exploration can accurately obtain information on the subsurface. In particular, Rayleigh wave dispersion curves can be used to determine the near-surface shear-wave velocity structure. This is a typical multiparameter, high-dimensio…