PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of The Hessigheim 3D (H3D) benchmark on semantic segmentation of high-resolution 3D point clouds and textured meshes from UAV LiDAR and Multi-View-Stereo

Text

The Hessigheim 3D (H3D) benchmark on semantic segmentation of high-resolution 3D point clouds and textured meshes from UAV LiDAR and Multi-View-Stereo

Michael Kolle - Nama Orang; Dominik Laupheimer - Nama Orang; Stefan Schmohl - Nama Orang; Norbert Haala - Nama Orang; Franz Rottensteiner - Nama Orang; Jan Dirk Wegner - Nama Orang; Hugo Ledoux - Nama Orang;

Automated semantic segmentation and object detection are of great importance in geospatial data analysis. However, supervised machine learning systems such as convolutional neural networks require large corpora of annotated training data. Especially in the geospatial domain, such datasets are quite scarce. Within this paper, we aim to alleviate this issue by introducing a new annotated 3D dataset that is unique in three ways: i) The dataset consists of both an Unmanned Aerial Vehicle (UAV) laser scanning point cloud and a 3D textured mesh. ii) The point cloud features a mean point density of about 800 ​pts/m2 and the oblique imagery used for 3D mesh texturing realizes a ground sampling distance of about 2–3 ​cm. This enables the identification of fine-grained structures and represents the state of the art in UAV-based mapping. iii) Both data modalities will be published for a total of three epochs allowing applications such as change detection. The dataset depicts the village of Hessigheim (Germany), henceforth referred to as H3D - either represented as 3D point cloud H3D(PC) or 3D mesh H3D(Mesh). It is designed to promote research in the field of 3D data analysis on one hand and to evaluate and rank existing and emerging approaches for semantic segmentation of both data modalities on the other hand. Ultimately, we hope that H3D will become a widely used benchmark dataset in company with the well-established ISPRS Vaihingen 3D Semantic Labeling Challenge benchmark (V3D).


Ketersediaan
03621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2021
Deskripsi Fisik
11 hlm PDF., 8,202 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.1, October 2021
Subjek
Semantic segmentation
UAV Laser scanning
Multi-View-Stereo
3D point cloud
3D textured mesh
Multi-modality
Multi-temporality
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • The Hessigheim 3D (H3D) benchmark on semantic segmentation of high-resolution 3D point clouds and textured meshes from UAV LiDAR and Multi-View-Stereo
    Automated semantic segmentation and object detection are of great importance in geospatial data analysis. However, supervised machine learning systems such as convolutional neural networks require large corpora of annotated training data. Especially in the geospatial domain, such datasets are quite scarce. Within this paper, we aim to alleviate this issue by introducing a new annotated 3D dataset that is unique in three ways: i) The dataset consists of both an Unmanned Aerial Vehicle (UAV) laser scanning point cloud and a 3D textured mesh. ii) The point cloud features a mean point density of about 800 ​pts/m2 and the oblique imagery used for 3D mesh texturing realizes a ground sampling distance of about 2–3 ​cm. This enables the identification of fine-grained structures and represents the state of the art in UAV-based mapping. iii) Both data modalities will be published for a total of three epochs allowing applications such as change detection. The dataset depicts the village of Hessigheim (Germany), henceforth referred to as H3D - either represented as 3D point cloud H3D(PC) or 3D mesh H3D(Mesh). It is designed to promote research in the field of 3D data analysis on one hand and to evaluate and rank existing and emerging approaches for semantic segmentation of both data modalities on the other hand. Ultimately, we hope that H3D will become a widely used benchmark dataset in company with the well-established ISPRS Vaihingen 3D Semantic Labeling Challenge benchmark (V3D).
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik