PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Detection of anomalous vehicle trajectories using federated learning

Text

Detection of anomalous vehicle trajectories using federated learning

Christian Koetsier - Nama Orang; Monika Sester - Nama Orang; Jelena Fiosina - Nama Orang; Jan N. Gremmel - Nama Orang; Jorg P. Müller - Nama Orang; David M. Woisetschlager - Nama Orang;

Nowadays mobile positioning devices, such as global navigation satellite systems (GNSS) but also external sensor technology like cameras allow an efficient online collection of trajectories, which reflect the behavior of moving objects, such as cars. The data can be used for various applications, e.g., traffic planning or updating maps, which need many trajectories to extract and infer the desired information, especially when machine or deep learning approaches are used. Often, the amount and diversity of necessary data exceeds what can be collected by individuals or even single companies. Currently, data owners, e.g., vehicle producers or service operators, are reluctant to share data due to data privacy rules or because of the risk of sharing information with competitors, which could jeopardize the data owner's competitive advantage. A promising approach to exploit data from several data owners, but still not directly accessing the data, is the concept of federated learning, that allows collaborative learning without exchanging raw data, but only model parameters.


Ketersediaan
13621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2022
Deskripsi Fisik
12 hlm PDF, 3.981 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.4, April 2022
Subjek
Machine Learning
Federated learning
Anomaly detection
Vehicle trajectories
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Detection of anomalous vehicle trajectories using federated learning
    Nowadays mobile positioning devices, such as global navigation satellite systems (GNSS) but also external sensor technology like cameras allow an efficient online collection of trajectories, which reflect the behavior of moving objects, such as cars. The data can be used for various applications, e.g., traffic planning or updating maps, which need many trajectories to extract and infer the desired information, especially when machine or deep learning approaches are used. Often, the amount and diversity of necessary data exceeds what can be collected by individuals or even single companies. Currently, data owners, e.g., vehicle producers or service operators, are reluctant to share data due to data privacy rules or because of the risk of sharing information with competitors, which could jeopardize the data owner's competitive advantage. A promising approach to exploit data from several data owners, but still not directly accessing the data, is the concept of federated learning, that allows collaborative learning without exchanging raw data, but only model parameters.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik