PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Generating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes

Text

Generating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes

Christian Kruse - Nama Orang; Franz Rottensteiner - Nama Orang; Dennis Wittich - Nama Orang; Christian Heipke - Nama Orang;

Even more than 75 years after the Second World War, numerous unexploded bombs (duds) linger in the ground and pose a considerable hazard to society. The areas containing these duds are documented in so-called impact maps, which are based on locations of exploded bombs; these locations can be found in aerial images taken shortly after bombing. To generate impact maps, in this paper we present a novel approach based on marked point processes (MPPs) for the automatic detection of bomb craters in such images, some of which are overlapping. The object model for the craters is represented by circles and is embedded in the MPP-framework. By means of stochastic sampling, the most likely configuration of objects within the scene is determined. Each configuration is evaluated using an energy function that describes the consistency with a predefined object model. High gradient magnitudes along the object borders and homogeneous grey values inside the objects are favoured, while overlaps between objects are penalized. Reversible Jump Markov Chain Monte Carlo sampling, in combination with simulated annealing, provides the global optimum of the energy function. Our procedure allows the combination of individual detection results covering the same location. Afterwards, a probability map for duds is generated from the detections via kernel density estimation and areas around the detections are classified as contaminated, resulting in an impact map. Our results, based on 74 aerial wartime images taken over different areas in Central Europe, show the potential of the method; among other findings, a clear improvement is achieved by using redundant image information. We also compared the MPP method for bomb crater detection with a state-of-of-the-art convolutional neural network (CNN) for generating region proposals; it turned out that the CNN outperforms the MPPs if a sufficient amount of representative training data is available and a threshold for a region to be considered as crater is properly tuned prior to running the experiments. If this is not the case, the MPP approach achieves better results.


Ketersediaan
17621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2022
Deskripsi Fisik
21 hlm PDF, 16.965 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.5, August 2022
Subjek
Marked point processes
Reversible Jump Markov
Chain Monte Carlo sampling
Aerial wartime images
Bomb craters
Duds
Impact maps
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Generating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes
    Even more than 75 years after the Second World War, numerous unexploded bombs (duds) linger in the ground and pose a considerable hazard to society. The areas containing these duds are documented in so-called impact maps, which are based on locations of exploded bombs; these locations can be found in aerial images taken shortly after bombing. To generate impact maps, in this paper we present a novel approach based on marked point processes (MPPs) for the automatic detection of bomb craters in such images, some of which are overlapping. The object model for the craters is represented by circles and is embedded in the MPP-framework. By means of stochastic sampling, the most likely configuration of objects within the scene is determined. Each configuration is evaluated using an energy function that describes the consistency with a predefined object model. High gradient magnitudes along the object borders and homogeneous grey values inside the objects are favoured, while overlaps between objects are penalized. Reversible Jump Markov Chain Monte Carlo sampling, in combination with simulated annealing, provides the global optimum of the energy function. Our procedure allows the combination of individual detection results covering the same location. Afterwards, a probability map for duds is generated from the detections via kernel density estimation and areas around the detections are classified as contaminated, resulting in an impact map. Our results, based on 74 aerial wartime images taken over different areas in Central Europe, show the potential of the method; among other findings, a clear improvement is achieved by using redundant image information. We also compared the MPP method for bomb crater detection with a state-of-of-the-art convolutional neural network (CNN) for generating region proposals; it turned out that the CNN outperforms the MPPs if a sufficient amount of representative training data is available and a threshold for a region to be considered as crater is properly tuned prior to running the experiments. If this is not the case, the MPP approach achieves better results.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik