PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Multi-temporal InSAR tropospheric delay modelling using Tikhonov regularization for Sentinel-1 C-band data

Text

Multi-temporal InSAR tropospheric delay modelling using Tikhonov regularization for Sentinel-1 C-band data

Pius Kipngetich Kirui - Nama Orang; Bjorn Riedel - Nama Orang; Markus Gerke - Nama Orang;

The increased availability of satellite SAR data coupled with improved InSAR processing algorithms has led to higher accuracy of InSAR-derived displacements. However, obtaining millimeter-level accuracy still remains a challenge due to the inability to accurately model the tropospheric delay, which is sometimes larger than the actual deformation. We propose to estimate the relative daily SAR tropospheric delay by double differencing interferograms that share a common image by leveraging Sentinel-1’s short revisit time and the interchanging role of the common image. The resulting double-differenced interferograms consist of tropospheric delay and processing noise. This combination leads to an inverse problem as a result of the differential nature of the interferograms. The unknown SAR tropopsheric delay is solved by Tikhonov regularization and the processing errors are accounted for by covariance modelling. In cases of rapid localized displacement, the deforming region is masked and the tropospheric delay for the deforming region is determined through kriging. Validation is performed using simulated SAR data and GNSS tropospheric delays. We find a good correlation between estimated SAR tropospheric delays and GNSS tropospheric delays, with an average root mean square error (RMSE) of 1.93 radians across six GNSS locations. In addition, we examine the performance of the correction on interferograms through variogram modelling, which indicates improved correction both for short-wavelength and long-wavelength tropospheric noise. SAR tropospheric delay estimates are integrated into a multitemporal InSAR workflow through either interferometric subtraction or stochastic modelling. Validation using GNSS measurements indicates that SAR tropospheric delay estimates significantly improve the accuracy of the InSAR-derived time-series displacement.


Ketersediaan
23621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2022
Deskripsi Fisik
19 hlm PDF, 11.938 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.6, December 2022
Subjek
InSAR
Tropospheric delay
Sentinel-1
Multi-temporal InSAR
Tikhonov regularization
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Multi-temporal InSAR tropospheric delay modelling using Tikhonov regularization for Sentinel-1 C-band data
    The increased availability of satellite SAR data coupled with improved InSAR processing algorithms has led to higher accuracy of InSAR-derived displacements. However, obtaining millimeter-level accuracy still remains a challenge due to the inability to accurately model the tropospheric delay, which is sometimes larger than the actual deformation. We propose to estimate the relative daily SAR tropospheric delay by double differencing interferograms that share a common image by leveraging Sentinel-1’s short revisit time and the interchanging role of the common image. The resulting double-differenced interferograms consist of tropospheric delay and processing noise. This combination leads to an inverse problem as a result of the differential nature of the interferograms. The unknown SAR tropopsheric delay is solved by Tikhonov regularization and the processing errors are accounted for by covariance modelling. In cases of rapid localized displacement, the deforming region is masked and the tropospheric delay for the deforming region is determined through kriging. Validation is performed using simulated SAR data and GNSS tropospheric delays. We find a good correlation between estimated SAR tropospheric delays and GNSS tropospheric delays, with an average root mean square error (RMSE) of 1.93 radians across six GNSS locations. In addition, we examine the performance of the correction on interferograms through variogram modelling, which indicates improved correction both for short-wavelength and long-wavelength tropospheric noise. SAR tropospheric delay estimates are integrated into a multitemporal InSAR workflow through either interferometric subtraction or stochastic modelling. Validation using GNSS measurements indicates that SAR tropospheric delay estimates significantly improve the accuracy of the InSAR-derived time-series displacement.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik