PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Towards complete tree crown delineation by instance segmentation with Mask R–CNN and DETR using UAV-based multispectral imagery and lidar data

Text

Towards complete tree crown delineation by instance segmentation with Mask R–CNN and DETR using UAV-based multispectral imagery and lidar data

S. Dersch - Nama Orang; A. Schottl - Nama Orang; P. Krzystek - Nama Orang; M. Heurich - Nama Orang;

Precise single tree delineation allows for a more reliable determination of essential parameters such as tree species, height and vitality. Methods of instance segmentation are powerful neural networks for detecting and segmenting single objects and have the potential to push the accuracy of tree segmentation methods to a new level. In this study, two instance segmentation methods, Mask R–CNN and DETR, were applied to precisely delineate single tree crowns using multispectral images and images generated from UAV lidar data. The study area was in Bavaria, 35 km north of Munich (Germany), comprising a mixed forest stand of around 7 ha characterised mainly by Norway spruce (Picea abies) and large groups of European beeches (Fagus sylvatica) with 181–236 trees per ha. The data set, consisting of multispectral images and lidar data, was acquired using a Micasense RedEdge-MX dual camera system and a Riegl miniVUX-1UAV lidar scanner, both mounted on a hexacopter (DJI Matrice 600 Pro). At an altitude of approximately 85 m, two flight missions were conducted at an airspeed of 5 m/s, leading to a ground resolution of 5 cm and a lidar point density of 560 points/m2. In total, 1408 trees were marked by visual interpretation of the remote sensing data for training and validating the classifiers. Additionally, 125 trees were surveyed by tacheometric means used to test the optimized neural networks. The evaluations showed that segmentation using only multispectral imagery performed slightly better than with images generated from lidar data. In terms of F1 score, Mask R–CNN with color infrared (CIR) images achieved 92% in coniferous, 85% in deciduous and 83% in mixed stands. Compared to the images generated by lidar data, these scores are the same for coniferous and slightly worse for deciduous and mixed plots, by 4% and 2%, respectively. DETR with CIR images achieved 90% in coniferous, 81% in deciduous and 84% in mixed stands. These scores were 2%, 1%, and 2% worse, respectively, compared to the lidar data images in the same test areas. Interestingly, four conventional segmentation methods performed significantly worse than CIR-based and lidar-based instance segmentations. Additionally, the results revealed that tree crowns were more accurately segmented by instance segmentation. All in all, the results highlight the practical potential of the two deep learning-based tree segmentation methods, especially in comparison to baseline methods.


Ketersediaan
33621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2023
Deskripsi Fisik
15 hlm PDF, 13.008 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.8, April 2023
Subjek
Instance segmentation
LIDAR
Single tree delineation
Multispectral imagery
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Towards complete tree crown delineation by instance segmentation with Mask R–CNN and DETR using UAV-based multispectral imagery and lidar data
    Precise single tree delineation allows for a more reliable determination of essential parameters such as tree species, height and vitality. Methods of instance segmentation are powerful neural networks for detecting and segmenting single objects and have the potential to push the accuracy of tree segmentation methods to a new level. In this study, two instance segmentation methods, Mask R–CNN and DETR, were applied to precisely delineate single tree crowns using multispectral images and images generated from UAV lidar data. The study area was in Bavaria, 35 km north of Munich (Germany), comprising a mixed forest stand of around 7 ha characterised mainly by Norway spruce (Picea abies) and large groups of European beeches (Fagus sylvatica) with 181–236 trees per ha. The data set, consisting of multispectral images and lidar data, was acquired using a Micasense RedEdge-MX dual camera system and a Riegl miniVUX-1UAV lidar scanner, both mounted on a hexacopter (DJI Matrice 600 Pro). At an altitude of approximately 85 m, two flight missions were conducted at an airspeed of 5 m/s, leading to a ground resolution of 5 cm and a lidar point density of 560 points/m2. In total, 1408 trees were marked by visual interpretation of the remote sensing data for training and validating the classifiers. Additionally, 125 trees were surveyed by tacheometric means used to test the optimized neural networks. The evaluations showed that segmentation using only multispectral imagery performed slightly better than with images generated from lidar data. In terms of F1 score, Mask R–CNN with color infrared (CIR) images achieved 92% in coniferous, 85% in deciduous and 83% in mixed stands. Compared to the images generated by lidar data, these scores are the same for coniferous and slightly worse for deciduous and mixed plots, by 4% and 2%, respectively. DETR with CIR images achieved 90% in coniferous, 81% in deciduous and 84% in mixed stands. These scores were 2%, 1%, and 2% worse, respectively, compared to the lidar data images in the same test areas. Interestingly, four conventional segmentation methods performed significantly worse than CIR-based and lidar-based instance segmentations. Additionally, the results revealed that tree crowns were more accurately segmented by instance segmentation. All in all, the results highlight the practical potential of the two deep learning-based tree segmentation methods, especially in comparison to baseline methods.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik