Text
UAV-based reference data for the prediction of fractional cover of standing deadwood from Sentinel time series
Increasing tree mortality due to climate change has been observed globally. Remote sensing is a suitable means for detecting tree mortality and has been proven effective for the assessment of abrupt and large-scale stand-replacing disturbances, such as those caused by windthrow, clear-cut harvesting, or wildfire. Non-stand replacing tree mortality events (e.g., due to drought) are more difficult to detect with satellite data – especially across regions and forest types. A common limitation for this is the availability of spatially explicit reference data. To address this issue, we propose an automated generation of reference data using uncrewed aerial vehicles (UAV) and deep learning-based pattern recognition. In this study, we used convolutional neural networks (CNN) to semantically segment crowns of standing dead trees from 176 UAV-based very high-resolution (
35 | 621.3678 | Perpustakaan BIG (Eksternal Harddisk) | Tersedia |
Tidak tersedia versi lain