PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Multi-modal image matching to colorize a SLAM based point cloud with arbitrary data from a thermal camera

Text

Multi-modal image matching to colorize a SLAM based point cloud with arbitrary data from a thermal camera

Melanie Elias - Nama Orang; Alexandra Weitkamp - Nama Orang; Anette Eltner - Nama Orang;

Thermal mapping of buildings can be one approach to assess the insulation, which is important in regard to upgrade buildings to increase energy efficiency and for climate change adaptation. Personal laser scanning (PLS) is a fast and flexible option that has become increasingly popular to efficiently map building facades. However, some measurement systems do not include sufficient colorization of the point cloud. In order to detect, map and reference any damages to building facades, it is of great interest to transfer images from RGB and thermal infrared (TIR) cameras to the point cloud. This study aims to answer the research question if a flexible tool can be developed, which enable such measurements with high spatial resolution and flexibility. Therefore, an image-to-geometry registration approach for rendered point clouds is combined with a deep learning (DL)-based image feature matcher to estimate the camera pose of arbitrary images in relation to the geometry, i.e. the point cloud, to map color information. We developed a research design for multi-modal image matching to investigate the alignment of RGB and TIR camera images to a PLS point cloud with intensity information using calibrated and un-calibrated images. The accuracies of the estimated pose parameters reveal the best performance of the registration for pre-calibrated, i.e. undistorted, RGB camera images. The alignment of un-calibrated RGB and TIR camera images to a point cloud is possible if sufficient and well-distributed 2D-3D feature matches between image and point cloud are available. Our workflow enables the colorization of point clouds with high accuracy using images with very different radiometric characteristics and image resolutions. Only a rough approximation of the camera pose is required and hence the approach reliefs strict sensor synchronization requirements.


Ketersediaan
43621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2023
Deskripsi Fisik
14 hlm PDF, 24,774 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.9, August 2023
Subjek
Deep learning
Thermal infrared (TIR) camera
Hand-held LiDAR
Urban mapping
Scene rendering
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Multi-modal image matching to colorize a SLAM based point cloud with arbitrary data from a thermal camera
    Thermal mapping of buildings can be one approach to assess the insulation, which is important in regard to upgrade buildings to increase energy efficiency and for climate change adaptation. Personal laser scanning (PLS) is a fast and flexible option that has become increasingly popular to efficiently map building facades. However, some measurement systems do not include sufficient colorization of the point cloud. In order to detect, map and reference any damages to building facades, it is of great interest to transfer images from RGB and thermal infrared (TIR) cameras to the point cloud. This study aims to answer the research question if a flexible tool can be developed, which enable such measurements with high spatial resolution and flexibility. Therefore, an image-to-geometry registration approach for rendered point clouds is combined with a deep learning (DL)-based image feature matcher to estimate the camera pose of arbitrary images in relation to the geometry, i.e. the point cloud, to map color information. We developed a research design for multi-modal image matching to investigate the alignment of RGB and TIR camera images to a PLS point cloud with intensity information using calibrated and un-calibrated images. The accuracies of the estimated pose parameters reveal the best performance of the registration for pre-calibrated, i.e. undistorted, RGB camera images. The alignment of un-calibrated RGB and TIR camera images to a point cloud is possible if sufficient and well-distributed 2D-3D feature matches between image and point cloud are available. Our workflow enables the colorization of point clouds with high accuracy using images with very different radiometric characteristics and image resolutions. Only a rough approximation of the camera pose is required and hence the approach reliefs strict sensor synchronization requirements.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik