PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of How suitable are vegetation indices for estimating the (R)USLE C-factor for croplands? A case study from Southeast Brazil

Text

How suitable are vegetation indices for estimating the (R)USLE C-factor for croplands? A case study from Southeast Brazil

Filipe Castro Felix - Nama Orang; Bernardo M. Candido - Nama Orang; Jener F.L. de Moraes - Nama Orang;

The cover and management factor (C-factor) of the Universal Soil Loss Equation (USLE) represents the effects of crop cover, weighted by rainfall pattern, on predicted soil erosion rates. This requires an estimate of seasonal rainfall erosivity and soil protection afforded by the crop at different phenological stages, expressed by a soil loss ratio (SLR). However, soil erosion modelers often rely on vegetation-index-based regressions to directly estimate the cover and management factor (C-factor) of the USLE from satellite images. Since this approach is based on a single or very few images, it does not characterize the seasonality of the crop cover or reflect the seasonality of the rainfall erosivity. Here, we evaluated five vegetation indices (NDVI, NDRE, SFDVI, ViGREEN, and MGRVI) in predicting SLRs and the C-factor for a sugarcane plot in Southeast Brazil. We used Sentinel-2 images and orthomosaics obtained by UAV surveys performed at the middle of each phenological stage. We compared the estimates of the C-factor based on the SLRs and rainfall erosivity against direct regressions from the literature. Our results confirmed the expected poor correlation between the C-factor and the vegetation indices. On the other hand, using the proposed vegetation indices proved to be a reliable alternative to predict the SLR in sugarcane areas, especially the NDVI, the NDRE, and MGRVI. In particular, the MGRVI accurately predicted the SLR and classified the UAV-derived orthomosaics.


Ketersediaan
44621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2023
Deskripsi Fisik
14 hlm PDF, 11.159 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.10, December 2023
Subjek
Sentinel-2
Soil loss ratio
UAV
Multispectral
Saccharum spp.
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • How suitable are vegetation indices for estimating the (R)USLE C-factor for croplands? A case study from Southeast Brazil
    The cover and management factor (C-factor) of the Universal Soil Loss Equation (USLE) represents the effects of crop cover, weighted by rainfall pattern, on predicted soil erosion rates. This requires an estimate of seasonal rainfall erosivity and soil protection afforded by the crop at different phenological stages, expressed by a soil loss ratio (SLR). However, soil erosion modelers often rely on vegetation-index-based regressions to directly estimate the cover and management factor (C-factor) of the USLE from satellite images. Since this approach is based on a single or very few images, it does not characterize the seasonality of the crop cover or reflect the seasonality of the rainfall erosivity. Here, we evaluated five vegetation indices (NDVI, NDRE, SFDVI, ViGREEN, and MGRVI) in predicting SLRs and the C-factor for a sugarcane plot in Southeast Brazil. We used Sentinel-2 images and orthomosaics obtained by UAV surveys performed at the middle of each phenological stage. We compared the estimates of the C-factor based on the SLRs and rainfall erosivity against direct regressions from the literature. Our results confirmed the expected poor correlation between the C-factor and the vegetation indices. On the other hand, using the proposed vegetation indices proved to be a reliable alternative to predict the SLR in sugarcane areas, especially the NDVI, the NDRE, and MGRVI. In particular, the MGRVI accurately predicted the SLR and classified the UAV-derived orthomosaics.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik