PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Target-based georeferencing of terrestrial radar images using TLS point clouds and multi-modal corner reflectors in geomonitoring applications

Text

Target-based georeferencing of terrestrial radar images using TLS point clouds and multi-modal corner reflectors in geomonitoring applications

Lorenz Schmid - Nama Orang; Tomislav Medic - Nama Orang; Othmar Frey - Nama Orang; Andreas Wieser - Nama Orang;

Terrestrial Radar Interferometry (TRI) is widely adopted in geomonitoring applications due to its capability to precisely observe surface displacements along the line of sight, among other key characteristics. As its deployment grows, TRI is also increasingly used to monitor smaller and more dispersed geological phenomena, where the challenge is their precise localization in 3d space if the pose of the radar interferometer is not known beforehand. To tackle this challenge, we introduce a semi-automatic target-based georeferencing method for precisely aligning TRI data with 3d point clouds obtained using long-range Terrestrial Laser Scanning (TLS). To facilitate this, we developed a multi-modal corner reflector (mmCR) that serves as a common reference point recognizable by both technologies, and we accompanied it with a semi-automatic data-processing pipeline, including the algorithms for precise center estimation. Experimental validation demonstrated that the corner reflector can be localized within the TLS data with a precision of 3–5 cm and within the TRI data with 1–2 dm. The targets were deployed in a realistic geomonitoring scenario to evaluate the implemented workflow and the achievable quality of georeferencing. The post-georeferencing mapping uncertainty was found to be on a decimeter level, matching the state-of-the-art results using dedicated targets and achieving more than an order of magnitude lower uncertainty than the existing data-driven approaches. In contrast to the existing target-based approaches, our results were achieved without laborious visual data inspection and manual target detection and on significantly larger distances, surpassing 2 km. The use of the developed mmCR and its associated data-processing pipeline extends beyond precise georeferencing of TRI imagery to TLS point clouds, allowing for alternatively georeferencing using total stations, mapping quality evaluation as well as on-site testing and calibrating TRI systems within the application environment.


Ketersediaan
65621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
12 hlm PDF, 6.663 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.13, August 2024
Subjek
GB-SAR
Target center estimation
Prism
Registration
Alignment
SLC image
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Target-based georeferencing of terrestrial radar images using TLS point clouds and multi-modal corner reflectors in geomonitoring applications
    Terrestrial Radar Interferometry (TRI) is widely adopted in geomonitoring applications due to its capability to precisely observe surface displacements along the line of sight, among other key characteristics. As its deployment grows, TRI is also increasingly used to monitor smaller and more dispersed geological phenomena, where the challenge is their precise localization in 3d space if the pose of the radar interferometer is not known beforehand. To tackle this challenge, we introduce a semi-automatic target-based georeferencing method for precisely aligning TRI data with 3d point clouds obtained using long-range Terrestrial Laser Scanning (TLS). To facilitate this, we developed a multi-modal corner reflector (mmCR) that serves as a common reference point recognizable by both technologies, and we accompanied it with a semi-automatic data-processing pipeline, including the algorithms for precise center estimation. Experimental validation demonstrated that the corner reflector can be localized within the TLS data with a precision of 3–5 cm and within the TRI data with 1–2 dm. The targets were deployed in a realistic geomonitoring scenario to evaluate the implemented workflow and the achievable quality of georeferencing. The post-georeferencing mapping uncertainty was found to be on a decimeter level, matching the state-of-the-art results using dedicated targets and achieving more than an order of magnitude lower uncertainty than the existing data-driven approaches. In contrast to the existing target-based approaches, our results were achieved without laborious visual data inspection and manual target detection and on significantly larger distances, surpassing 2 km. The use of the developed mmCR and its associated data-processing pipeline extends beyond precise georeferencing of TRI imagery to TLS point clouds, allowing for alternatively georeferencing using total stations, mapping quality evaluation as well as on-site testing and calibrating TRI systems within the application environment.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik