PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of UseGeo - A UAV-based multi-sensor dataset for geospatial research

Text

UseGeo - A UAV-based multi-sensor dataset for geospatial research

Nex - Nama Orang; M. Weinmann - Nama Orang; E.K. Stathopoulou - Nama Orang; F. Remondino - Nama Orang; B. Jutzi - Nama Orang; M.Y. Yang - Nama Orang; L. Madhuanand - Nama Orang; Y. Yogender - Nama Orang; B. Alsadik - Nama Orang; R. Qin - Nama Orang;

3D reconstruction is a long-standing research topic in the photogrammetric and computer vision communities; although a plethora of open-source and commercial solutions for 3D reconstruction have been released in the last few years, several open challenges and limitations still exist. Undoubtedly, deep learning algorithms have demonstrated great potential in several remote sensing tasks, including image-based 3D reconstruction. State-of-the-art monocular and stereo algorithms leverage deep learning techniques and achieve increased performance in depth estimation and 3D reconstruction. However, one of the limitations of such methods is that they highly rely on large training sets that are often tedious to obtain; even when available, they typically refer to indoor, close-range scenarios and low-resolution images. Especially while considering UAV (Unmanned Aerial Vehicle) scenarios, such data are not available and domain adaptation is not a trivial challenge. To fill this gap, the UAV-based multi-sensor dataset for geospatial research (UseGeo - https://usegeo.fbk.eu/home) is introduced in this paper. It contains both image and LiDAR data and aims to support relevant research in photogrammetry and computer vision with a useful training set for both stereo and monocular 3D reconstruction algorithms. In this regard, the dataset provides ground truth data for both point clouds and depth maps. In addition, UseGeo can be also a valuable dataset for other tasks such as feature extraction and matching, aerial triangulation, or image and LiDAR co-registration. The paper introduces the UseGeo dataset and validates some state-of-the-art algorithms to assess their usability for both monocular and multi-view 3D reconstruction.


Ketersediaan
66621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
12 hlm PDF, 7.935 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.13, August 2024
Subjek
Deep learning
LIDAR
UAV
3D reconstruction
Monocular depth estimation
Stereo matching
Multi-view stereo
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • UseGeo - A UAV-based multi-sensor dataset for geospatial research
    3D reconstruction is a long-standing research topic in the photogrammetric and computer vision communities; although a plethora of open-source and commercial solutions for 3D reconstruction have been released in the last few years, several open challenges and limitations still exist. Undoubtedly, deep learning algorithms have demonstrated great potential in several remote sensing tasks, including image-based 3D reconstruction. State-of-the-art monocular and stereo algorithms leverage deep learning techniques and achieve increased performance in depth estimation and 3D reconstruction. However, one of the limitations of such methods is that they highly rely on large training sets that are often tedious to obtain; even when available, they typically refer to indoor, close-range scenarios and low-resolution images. Especially while considering UAV (Unmanned Aerial Vehicle) scenarios, such data are not available and domain adaptation is not a trivial challenge. To fill this gap, the UAV-based multi-sensor dataset for geospatial research (UseGeo - https://usegeo.fbk.eu/home) is introduced in this paper. It contains both image and LiDAR data and aims to support relevant research in photogrammetry and computer vision with a useful training set for both stereo and monocular 3D reconstruction algorithms. In this regard, the dataset provides ground truth data for both point clouds and depth maps. In addition, UseGeo can be also a valuable dataset for other tasks such as feature extraction and matching, aerial triangulation, or image and LiDAR co-registration. The paper introduces the UseGeo dataset and validates some state-of-the-art algorithms to assess their usability for both monocular and multi-view 3D reconstruction.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik