PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Colour guided ground-to-UAV fire segmentation

Text

Colour guided ground-to-UAV fire segmentation

Rui Zhou - Nama Orang; Tardi Tjahjadi - Nama Orang;

Leveraging ground-annotated data for scene analysis on unmanned aerial vehicles (UAVs) can lead to valuable real-world applications. However, existing unsupervised domain adaptive (UDA) methods primarily focus on domain confusion, which raises conflicts among training data if there is a huge domain shift caused by variations in observation perspectives or locations. To illustrate this problem, we present a ground-to-UAV fire segmentation method as a novel benchmark to verify typical UDA methods, and propose an effective framework, Colour-Mix, to boost the performance of the segmentation method equivalent to the fully supervised level. First, we identify domain-invariant fire features by deriving fire-discriminating components (u*VS) defined in colour spaces Lu*v*, YUV, and HSV. Notably, we devise criteria to combine components that are beneficial for integrating colour signals into deep-learning training, thus significantly improving the generalisation abilities of the framework without resorting to UDA techniques. Second, we perform class-specific mixing to eliminate irrelevant background content on the ground scenario and enrich annotated fire samples for the UAV imagery. Third, we propose to disentangle the feature encoding for different domains and use class-specific mixing as robust training signals for the target domain. The framework is validated on the drone-captured dataset, Flame, by using the combined ground-level source datasets, Street Fire and Corsica Wildfires.


Ketersediaan
67621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
9 hlm PDF, 2.989 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.14, December 2024
Subjek
Ground-to-UAV
Domain adaptation
Colour features
Class mixing
UAV-based fire monitoring
Fire segmentation
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Colour guided ground-to-UAV fire segmentation
    Leveraging ground-annotated data for scene analysis on unmanned aerial vehicles (UAVs) can lead to valuable real-world applications. However, existing unsupervised domain adaptive (UDA) methods primarily focus on domain confusion, which raises conflicts among training data if there is a huge domain shift caused by variations in observation perspectives or locations. To illustrate this problem, we present a ground-to-UAV fire segmentation method as a novel benchmark to verify typical UDA methods, and propose an effective framework, Colour-Mix, to boost the performance of the segmentation method equivalent to the fully supervised level. First, we identify domain-invariant fire features by deriving fire-discriminating components (u*VS) defined in colour spaces Lu*v*, YUV, and HSV. Notably, we devise criteria to combine components that are beneficial for integrating colour signals into deep-learning training, thus significantly improving the generalisation abilities of the framework without resorting to UDA techniques. Second, we perform class-specific mixing to eliminate irrelevant background content on the ground scenario and enrich annotated fire samples for the UAV imagery. Third, we propose to disentangle the feature encoding for different domains and use class-specific mixing as robust training signals for the target domain. The framework is validated on the drone-captured dataset, Flame, by using the combined ground-level source datasets, Street Fire and Corsica Wildfires.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik