PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of A new unified framework for supervised 3D crown segmentation (TreeisoNet) using deep neural networks across airborne, UAV-borne, andterrestrial laser scans

Text

A new unified framework for supervised 3D crown segmentation (TreeisoNet) using deep neural networks across airborne, UAV-borne, andterrestrial laser scans

Zhouxin Xi - Nama Orang; Dani Degenhardt - Nama Orang;

Accurately defining and isolating 3D tree space is critical for extracting and analyzing tree inventory attributes, yet it remains a challenge due to the structural complexity and heterogeneity within natural forests. This study introduces TreeisoNet, a suite of supervised deep neural networks tailored for robust 3D tree segmentation across natural forest environments. These networks are specifically designed to identify tree locations, stem components (if available), and crown clusters, making them adaptable to varying scales of laser scanning from airborne laser scannner (ALS), terrestrial laser scanner (TLS), and unmanned aerial vehicle (UAV). Our evaluation used three benchmark datasets with manually isolated tree references, achieving mean intersection-over-union (mIoU) accuracies of 0.81 for UAV, 0.76 for TLS, and 0.59 for ALS, which are competitive with contemporary algorithms such as ForAINet, Treeiso, Mask R-CNN, and AMS3D. Noise from stem point delineation minimally impacted stem location detection but significantly affected crown clustering. Moderate manual refinement of stem points or tree centers significantly improved tree segmentation accuracies, achieving 0.85 for UAV, 0.86 for TLS, and 0.80 for ALS. The study confirms SegFormer as an effective 3D point-level classifier and an offset-based UNet as a superior segmenter, with the latter outperforming unsupervised solutions like watershed and shortest-path methods. TreeisoNet demonstrates strong adaptability in capturing invariant tree geometry features, ensuring transferability across different resolutions, sites, and sensors with minimal accuracy loss.


Ketersediaan
70621.3678Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
ISPRS Open Journal of Photogrammetry and Remote Sensing
No. Panggil
621.3678
Penerbit
Amsterdam : Elsevier., 2025
Deskripsi Fisik
13 hlm PDF, 8.039 KB
Bahasa
Inggris
ISBN/ISSN
1872-8235
Klasifikasi
621.3678
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.15, January 2025
Subjek
LIDAR
Supervised deep neural networks
3D tree segmentation
Treeisonet
Stem classification
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • A new unified framework for supervised 3D crown segmentation (TreeisoNet) using deep neural networks across airborne, UAV-borne, andterrestrial laser scans
    Accurately defining and isolating 3D tree space is critical for extracting and analyzing tree inventory attributes, yet it remains a challenge due to the structural complexity and heterogeneity within natural forests. This study introduces TreeisoNet, a suite of supervised deep neural networks tailored for robust 3D tree segmentation across natural forest environments. These networks are specifically designed to identify tree locations, stem components (if available), and crown clusters, making them adaptable to varying scales of laser scanning from airborne laser scannner (ALS), terrestrial laser scanner (TLS), and unmanned aerial vehicle (UAV). Our evaluation used three benchmark datasets with manually isolated tree references, achieving mean intersection-over-union (mIoU) accuracies of 0.81 for UAV, 0.76 for TLS, and 0.59 for ALS, which are competitive with contemporary algorithms such as ForAINet, Treeiso, Mask R-CNN, and AMS3D. Noise from stem point delineation minimally impacted stem location detection but significantly affected crown clustering. Moderate manual refinement of stem points or tree centers significantly improved tree segmentation accuracies, achieving 0.85 for UAV, 0.86 for TLS, and 0.80 for ALS. The study confirms SegFormer as an effective 3D point-level classifier and an offset-based UNet as a superior segmenter, with the latter outperforming unsupervised solutions like watershed and shortest-path methods. TreeisoNet demonstrates strong adaptability in capturing invariant tree geometry features, ensuring transferability across different resolutions, sites, and sensors with minimal accuracy loss.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik