PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Evaluating the classification of images from geoscience papers using small data

Text

Evaluating the classification of images from geoscience papers using small data

Jessica S. Santos - Nama Orang; Rodrigo S. Ferreira - Nama Orang; Viviane T. Silva - Nama Orang;

Image classification becomes a very challenging task when it involves classes that have shared characteristics and few data are available for training the classifier. Considering this problem, in this work we adopt a case study based on images from geoscience papers and investigate how different features can be combined in order to improve image classification results. In our investigation, we present a tool for evaluating class separability based on the position of the samples in a two-dimensional map according to different features. Moreover, we investigate the usefulness of classifiers’ membership probabilities for our scenario, validating if they can be used as reliable measures of the confidence in the predicted labels. Our experimental results show that it is possible to take advantage of deep learning models’ ability to learn discriminating features from data and combine them with hand-crafted features to improve classification. With this feature combination, we trained a Support Vector Machine (SVM) classifier whose results are better than the ones achieved using only deep learning.


Ketersediaan
87551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2020
Deskripsi Fisik
7 hlm PDF, 2.787 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.5, March 2020
Subjek
-
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Evaluating the classification of images from geoscience papers using small data
    Image classification becomes a very challenging task when it involves classes that have shared characteristics and few data are available for training the classifier. Considering this problem, in this work we adopt a case study based on images from geoscience papers and investigate how different features can be combined in order to improve image classification results. In our investigation, we present a tool for evaluating class separability based on the position of the samples in a two-dimensional map according to different features. Moreover, we investigate the usefulness of classifiers’ membership probabilities for our scenario, validating if they can be used as reliable measures of the confidence in the predicted labels. Our experimental results show that it is possible to take advantage of deep learning models’ ability to learn discriminating features from data and combine them with hand-crafted features to improve classification. With this feature combination, we trained a Support Vector Machine (SVM) classifier whose results are better than the ones achieved using only deep learning.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik